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Abstract—Much research has been devoted to topic detection
from text, but one major challenge has not been addressed:
revealing the rich relationships that exist among the detected
topics. Finding such relationships is important since many
applications are interested in how topics come into being,
how they develop, grow, disintegrate, and finally disappear.
In this paper, we present a novel method that reveal the
inter-connections among topics discovered from the text data.
Specifically, our method focuses on how one topic splits into
multiple topics, and how multiple topics merge into one topic.
We adopt the hierarchical Dirichlet process (HDP) model,
and propose an incremental Gibbs sampling algorithm to
incrementally derive and refine the labels of clusters. We
then characterize the splitting and merging patterns among
clusters based on how labels change. We propose a global
analysis process that focuses on cluster splitting and merging,
and a finer-granularity analysis process that helps users to
better understand the content of the clusters and the evolution
patterns. We also develop a visualization to present the results.

Keywords-Hierarchical Dirichlet processes, Incremental
Gibbs Sampling, Clustering, Mixture models

I. Introduction

In many fields, including business analysis and academic
research, it is not only important to keep track of topics of
interest, but also to understand the evolution of topics. A
topic has a life cycle, and to understand its life cycle is to
understand how a topic comes into being, what triggers and
contributes to its development and its disintegration, and how
it finally dissolves into other topics, or simply disappears.

Much work has been devoted to topic detection [1]. For
example, in the word cloud approach, words that appear
more frequently are given greater prominence, and are
used to summarize the text. Statistical methods such as
the mixture of multinomial model [2] and latent Dirichlet
Allocation (LDA) [3] try to find latent topics embodied by
the distribution of a set of words. However, these methods
do not reveal the dynamics and interconnections among
the detected topics. Although it is straightforward to give
a temporal dimension to topics, for instance, by detecting
topics in windows over text streams, it alone is insufficient
to reveal the causality among topics.

In this paper, we study the overall evolution of topics and
their critical events in text streams. The critical events are
a number of fundamental topic life-cycle events, including
topic birth, splitting, merging, and death. Topic merging

and splitting are the major relationships characterizing the
connections among topics. As a result, we mainly focus on
revealing how two (or more) topics are combined into one
topic and how one topic is divided into several related topics.

Fig. 1(a) shows the evolution of topics extracted from a
news dataset, as well as their relationships to one another.
This news dataset contains 16 day Bing news related to
“Obama.” In the figure, each colored layer represents a
derived cluster (hence a topic). The timestamps of the topic
layers are associated with keyword clouds (Fig. 1(b)) and im-
portant documents (Fig. 1(c)). These summarize the content
of the topic and its evolution over time. At each time point,
the width of a layer represents the strength or popularity
of the topic in terms of the number of documents covered
by the topic at that time. With this visualization, users can
observe how topics evolve over time, including its strength,
content, and splitting/merging relationship. In Fig. 1, we can
find that topic “Egypt” emerged on Jan. 27. Later it combines
with topic “white house” together to generate a “democracy”
topic. Moreover, the topic “reform” splits into Obama’s
“faith” and “health care” related issues around Feb. 2. Then
it gradually develops into Obama quitting “smoking”, First
lady and “campaign”, the education of his “daughters” ,
meeting “ambassador” and “university” speech from Feb.
6 to Feb. 10.

Figure 1. An example of splitting/merging of text clusters: News articles
of 16 days related to “Obama”.

There are two challenges to mine evolution patterns and
the related critical events. The first challenge is how to
model the evolution relationships among topics. The evo-



lution patterns may change considerably between two time
points. Consequently, it is hard to model them by using
current evolutionary clustering [4], [5] or topic modeling
approaches [6], [7]. The second challenge is how to allow
the user to quickly and effectively examine the major reasons
that trigger these evolution patterns. Understanding why is
very important for the user to derive insight from a large
set of text data, and it is therefore desirable to design a
mechanism to extract the critical events, as well as the
keyword connections to provide the related information.

To tackle these challenges, we propose an approach to
tracking and connecting clusters in text data. Our approach
consists of two phases: a global analysis and a local anal-
ysis. The global analysis focuses on learning the cluster
merging/splitting patterns. In this phase, we propose an
incremental learning procedure to learn the the hierarchical
Dirichlet processes (HDP) model [8] and the splitting and
merging relationships are then extracted given the incre-
mental Gibbs sampling of cluster indicators. The local
analysis aims at automatically identifying critical events and
keyword connections. The keyword connections are used to
represent the semantics underlying text. Compared to the
top topic keywords based on the bag-of-words model, the
co-occurrence analysis provides users with the second order
statistics of keywords.

II. Global Analysis of Cluster Splitting/Merging

In this section, we present the probabilistic model for
incremental document splitting and merging analysis. We
adopt an HDP mixture model since it provides a unified
view of multiple corpora analysis. When each corpus is a
document, and each data point is a word, HDP is a Bayesian
hierarchical modeling of LDA [3] with Dirichlet process
prior. In particular, HDP can automatically determine the
topic/cluster numbers [8].

We first introduce some concepts and notations which are
useful for subsequent discussions. In our model, we assume
the data are coming in an incremental batch-mode manner,
i.e., there are multiple documents coming at each epoch (or
time point, e.g. a month). We denote t as the time point, and
Xt

j = {xt
j1, . . . , x

t
ji, . . . , x

t
jnt

j
} is the data set at time t, where

xt
ji is the ith data in jth corpus. nt

j is the data number in
corpus j at time t. The associated cluster indicator variables
are denoted by Zt

j = {zt
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t
ji, . . . , z

t
jnt

j
}, where zt

ji is the
cluster assignment for ith data in jth corpus. Moreover, we
let Xt = {Xt

1, . . . , X
t
J} and Zt = {Zt

1, . . . ,Z
t
J} for all the corpora

1, . . . , J; X = {X1, . . . , XT } and Z = {Z1, . . . ,ZT } for all the
data.

A. HDP Modeling

We model the data as an HDP mixture, where the
documents at different time epochs share the same HDP
generative process. Inspired by the TDT method based on
DP mixture model [9], our incremental HDP also leverages

(a) Time t − 1

(b) Case 1: After Predic-
tion Sampling at t

(c) Case 1: After HDP and
Rejuvenation Sampling at t

(d) Case 2: After Predic-
tion Sampling at t

(e) Case 2: After HDP and
Rejuvenation Sampling at t

(f) Case 3: After Predic-
tion Sampling at t

(g) Case 3: After HDP and
Rejuvenation Sampling at t

Figure 2. Examples of splitting/merging of clusters. (Circles represent
samples at time t − 1; rectangles encode samples at time t.)

the property of Dirichlet process [10] to automatically infer
the changing number of clusters. In HDP, a global measure
G0 is drawn from a DP (γ,H), with concentration parameter
γ and base measure H. Then, a set of measures {G j}

J
j=1 is

drawn from the DP with base measure G0 . Here, G j models
corpus j . Such a process is mathematically summarized as

G0 ∼ DP (γ,H) , G j|G0, α0∼DP (α0,G0) . (1)

Given the global measure G0 and concentration parameter
α0, G j’s are conditionally dependent. Having G j , sample xt

ji
at time t in corpus j is drawn from the following mixture
model

θt
ji∼G j, xt

ji ∼ Multi(x|θt
ji), (2)

We assume the distribution of each cluster is a multinomial
distribution:

P(xt
ji|φk) = Multi(xt

ji|φk) =

∑D
d=1 xt

ji,d!∏D
d=1 xt

ji,d!

D∏
d=1

φ
xt

ji,d

k,d (3)



where xt
ji,d is the dth dimension of document term vector,

D is the number of dimension of xt
ji, and φk is the cluster

distribution parameter. θt
ji = φk if xt

ji is in the kth cluster.
When applying HDP to topic modeling, xt

ji is one word and
then we have D = 1.

Following the stick-breaking construction [11], G0 has the
form

G0 =

∞∑
k=1

βkδφk , φk∼H,β ∼ GEM(γ),β = (βk)∞k=1 (4)

The discrete set of parameters {φk}
∞
k=1 is drawn from the base

measure H, which is a Dirichlet distribution. GEM (γ) refers
to such a process: β̃k ∼ Beta(1, γ) , βk = β̃k

∏k−1
i=1 (1− β̃i) . δφk

is a probability measure concentrated at φk . Then it is shown
in [8] that G j can be constructed as

G j =
∑∞

k=1
π jkδφk , π j |β, α0 ∼ DP (α0,β) , (5)

where π j is a vector composed by π jk. This formula indicates
that different corpora share the same set of distinct atoms [8].
We then have the underlying model to generate xt

ji for corpus
j as

zt
ji ∼ Multi(z|π j), xt

ji ∼ Multi(x|θt
ji = φzt

ji
). (6)

Here the second multinomial distribution is with the param-
eter θt

ji which is equals to φzt
ji

when the cluster label of xt
ji

is zt
ji.

One of the major schemes of Gibbs sampling to infer
HDP is to first sample zt

ji and then sample other hyper-
parameters [8]. Sampling the label zt

ji of xt
ji is given by:

p(zt
ji = k|Z¬t ji, X) ∝ p(zt

ji = k|Z¬t ji) · p(xt
ji|Z
¬t ji
k , X¬t ji

k )

∝

 (n¬t ji
j,k + α0βk) f ¬t ji

k (xt
ji) k ≤ Kactive

α0βu f ¬t ji
new (xt

ji) k > Kactive
(7)

where Z¬t ji and X¬t ji represent the cluster indicator variables
and observations without zt

i j and xt
i j respectively, Z¬t ji

k and
X¬t ji

k represent the variables in cluster k except for zt
i j and

xt
i j respectively, Kactive is the sampled cluster number, n¬t ji

j,k is
the number of x except for xt

ji that belongs to cluster k, and
βu = 1 −

∑Kactive
k=1 βk. Moreover, f ¬t ji

k (xt
ji) = p(xt

ji|Z
¬t ji
k , X¬t ji

k )
and f ¬t ji

new (xt
ji) = p(xt

ji) can be computed by the marginal dis-
tribution based on the conjugate multinomial and Dirichlet
distributions [8].

B. Incremental Splitting/Merging Computing

In this section, we present an incremental Gibbs sampling
algorithm to sample the incoming documents as well as to
model the splitting and merging process of the clusters. The
major steps of the algorithm are illustrated in Algorithm 1.
In the algorithm, we incrementally sample the latent cluster
indicator variable zt

ji for xt
ji. At each time t, we introduce

three sampling steps and obtain three summarization results.

1) Sampling: The sampling procedure of the incremental
HDP model targets at extracting the connections between
dynamic clusters. We have three samplers including “predic-
tion sampler”, “HDP sampler”, and “rejuvenation sampler”.
The “prediction sampler” is a simulation of supervised
classifier, which predicts the labels of xt

ji at time t based
on the previous HDP model. The “HDP sampler” is a
simulation of semi-supervised clustering, which infers the
labels of Xt while fixing the old labels of X{1:t−1}, where
X{1:t−1} = {X1, . . . , Xt−1}. The “rejuvenation sampler” works
as a pure unsupervised clustering, which re-samples the data
X{t−Twin+1:t} within a time window Twin.

Prediction Sampler. As shown in Fig. 2(a), before time
t, we have some samples, as well as an HDP model. We
first apply a prediction sampler to predict the labels of
new coming data at time t based on the previous HDP
model (shown in Figs. 2(b), 2(d) and 2(f)). The prediction
sampler is defined as:

p(zt
ji = k|Z{1:t−1},old, X{1:t−1})

∝ p(zt
ji = k|Z{1:t−1},old) · p(xt

ji|Z
{1:t−1},old
k , X{1:t−1}

k )
∝ (n{1:t−1},old

j,k + αt
0β

t
k) f {1:t−1},old

k (x ji) k ≤ Kactive

(8)

where Z{1:t−1},old = {Z1,old, . . . ,Zt−1,old}, Z{1:t−1},old is the old
data label set before predicting zt

ji, n{1:t−1},old
j,k is the number

of documents that belong to cluster k from time 1 to t − 1,
and f {1:t−1},old

k (x ji) = p(xt
ji|Z
{1:t−1},old
k , X{1:t−1}

k ) is the marginal
distribution based on the previous model. The prediction
sampler neither modifies the HDP model, nor generates new
clusters. It mainly targets at predicting the labels of the
samples at time t based on the HDP model at time t−1. We
denote the predicted labels of xt

ji as zt,old
ji .

HDP Sampler. After sampling by the prediction sampler,
we have a set of labels of the new incoming data Xt.
However, the labels are only based on the previous data and
model. They may fail to clearly convey the content of the
new data. To tackle this problem, we apply an HDP sampler
based on the property of DP, to re-sample the document
labels of Xt

p(zt
ji = k|Z{1:t−1},old,Zt,new,¬t ji, X{1:t},¬t ji)

∝ p(zt
ji = k|Z{1:t−1},old,Zt,new,¬t ji)

·p(xt
ji|Z
{1:t−1},old
k ,Zt,new,¬t ji

k , X{1:t},¬t ji
k )

∝

 (n{1:t},new,¬t ji
j,k + αt

0β
t
k) f {1:t},new,¬t ji

k (x ji) k ≤ Kactive

α0βu f {1:t},new,¬t ji
new (x ji) k > Kactive

(9)
where Zt,new,¬t ji is the sampled data label set of Xt except for
xt

ji, X{1:t},¬t ji is X{1:t} without xt
ji, n{1:t},new,¬t ji

j,k is the number of
documents that belong to cluster k from time 1 to t except
for xt

ji. Similar to the computation of f ¬ ji
k (x ji) and f ¬ ji

new(x ji),
f {1:t},new,¬t ji
k (x ji) and f {1:t},new,¬t ji

new are calculated based on the
new data and labels from time 1 to t. The HDP sampler both
modifies the HDP model and generates new clusters for the
new coming data. We denote the predicted labels of xt

ji as



zt,new
ji here. After this step, we have Z{1:t−1},old and Zt,new for

X{1:t−1} and Xt.

Rejuvenation Sampler. Inspired by the incremental
Gibbs sampler for LDA [12], we also provide a rejuvenation
sampler for historical data. In this sampler, we bound the
rejuvenation set in a certain time window, to fix the memory
cost of the inference algorithm. We select a time window
Twin to do the rejuvenation sampling, which means we only
sample the labels zτji from t − Twin + 1 to t for better fitness
to the HDP model:

p(zτji = k|Z{1:t−Twin},old,Z{t−Twin+1:t},new,¬τ ji, X{1:t},¬τ ji)
∝ p(zτji = k|Z{1:t−Twin},old,Z{t−Twin+1:t},new,¬τ ji)
·p(xτji|Z

{1:t−Twin},old
k ,Z{t−Twin+1,t},new,¬τ ji

k , X{1:t},¬τ ji
k )

∝ (n{1:t},new,¬τ ji
j,k + αt

0β
t
k) f {1:t},new,¬τ ji

k (x ji) k ≤ Kactive
(10)

where Z{t−Twin+1:t},new,¬τ ji is the sampled data label set of
X{t−Twin+1:t} except for xτji, n{1:t},new,¬τ ji

j,k is the number of docu-
ments that belong to cluster k from time 1 to t based on the
old labels Z{1:t−Twin},old and new labels Z{t−Twin+1:t},new,¬τ ji. The
rejuvenation sampler modifies the HDP model but does not
generate new clusters. After this step, we have Z{1:t−Twin},old

and Z{t−Twin+1:t},new for X{1:t−Twin},old and X{t−Twin+1:t},new. In the
incremental setting, X{1:t−Twin} and Z{1:t−Twin},old can be saved
and removed from memory. As shown in Fig. 2(c), the
clusters in the adjacent times epochs merge into one cluster,
and one of the previous clusters dies after re-sampling. In
Fig. 2(e), the left cluster splits into two clusters from time
t − 1 to t, and one of the clusters is new while another
remains unchanged. Moreover, in Fig. 2(g), both left and
right clusters split, while the bottom documents merge into
one new cluster from time t − 1 to t.

2) Summarization: After sampling at each time point,
we summarize the splitting and merging relationships of
the related clusters. Typically, there are three types of split-
ting/merging statistics, in terms of “merging input at time t”,
“splitting output at time t − 1”, and “cluster content at time
t” as shown in Algorithm 1. The summarization of “merging
input at time t” measures how many documents in a cluster
at current time t are coming from different clusters based on
the previous HDP model. The summarization of “splitting
output at time t − 1” measures how many documents will
be sampled into different clusters for a specific cluster. The
summarization of “cluster content at time t” shows the
top keywords of a specific cluster at time t. We compute
them respectively as follows. The merging and splitting
probabilities are measured based on both the data at time
t and the historical data in a time window with size Twin.

Merging Input at Time t. For the merging input at time t,
the proportion of cluster r coming from cluster s is measured
by the difference between zt,old

ji and zt,new
ji from time t−Twin+1

Algorithm 1 Incremental HDP Gibbs Sampling.
1: Input: Initial cluster number Kinit. Document sets at each time

X1, . . . , XT . Maximum sampling iteration number MaxIter.
Record window size Twin.
{\\Initialize time 1.}

2: Random initialize cluster IDs for time 1.
3: for i = 1, . . . , n1 do
4: Sample z1

ji according to Eq. (9).
5: end for
6: Sample hyper-parameters α0 and γ [13].
7: for t = 2, . . . ,T do
8: {\\Prediction Sampler.}
9: for j = 1, . . . , J and i = 1, . . . , nt

j do
10: Predict zt

ji (denoted as zt,old
ji ) according to Eq. (8).

11: end for
{\\HDP Sampler.}

12: for iter < MaxIter, j = 1, . . . , J and i = 1, . . . , nt
j do

13: Sample zt
ji (denoted as zt,new

ji ) according to Eq. (9).
14: Update cluster models φk.
15: end for

{\\Rejuvenation Sampler.}
16: Let Twin = max(t − Twin + 1, 1).
17: for τ = (t − Twin + 1), . . . , t do
18: for iter < MaxIter, j = 1, . . . , J and i = 1, . . . , nτj do
19: Re-sample zτji (denoted as zτ,new

ji ) according to Eq. (10).
20: end for
21: end for
22: Sample hyper-parameters α0 and γ [13].
23: Summarize merging input at time t according to Eq. (11).
24: Summarize splitting output at time t − 1 according to

Eq. (12).
25: Summarize cluster at time t according to Eq. (13).
26: Let zτ,old

ji = zτ,new
ji for all τ < t, j, i.

27: end for

to t:

Pin
t (s→ r) ∆

=

∑t
τ=t−Twin+1

∑
i, j I(zτ,old

ji = s & zτ,new
ji = r)∑t

τ=t−Twin+1
∑nt

i=1 I(zτ,new
ji = r)

(11)

where I(·) is an indicator function that flips between binary
values, i.e., I(true) = 1 and I( f alse) = 0. As shown in
Figs. 2(c) and 2(g), we can have two basic patterns of
merging. The first case happens when two or more clusters
become combined into one (Figs. 2(c)). The second one is
more complex, the new cluster is merged from the two (or
more) branches which are split from the previous clusters
(Fig. 2(g)).

Splitting Output at Time t − 1. For the splitting output
at time t − 1, the proportion of cluster s flowing to cluster r
is measured by the difference between zt,old

ji and zt,new
ji from

time t − Twin + 1 to t:

Pout
t−1(s→ r) ∆

=

∑t
τ=t−Twin+1

∑
j,i I(zτ,old

ji = s & zτ,new
ji = r)∑t

τ=t−Twin+1
∑

j,i I(zτ,old
ji = s)

.

(12)
In cluster s, if some documents are clustered into different
clusters when incrementally processing more documents,
then we can regard that the current cluster cannot describe



the content of the inside documents anymore. Consequently,
the cluster is actually split into several smaller clusters, based
on the new documents and model. As shown in Fig. 2(e),
the left cluster splits into two clusters when incrementally
handling new documents. In Fig. 2(g) both left and right
sides split, the historical data is then useful for extracting
such splitting relationships.

Cluster Content at Time t. For each time t, we need to
summarize the cluster content based on the top keywords.
Since the documents are represented by the vectors of
term frequencies, the cluster center can be regarded as the
histogram of term frequencies in the cluster. The posterior
of the cluster parameter φ is computed by:

p(φt
k

∣∣∣{xt
ji, z

t
ji = k,∀ j, i},H) ∝ p(φk |H)p(xt

ji|φk, {zt
ji = k,∀ j, i}).

(13)
Here, p(φk |H) is a Dirichlet distribution and p(xt

i |φk, zt
i = k)

is a multinomial distribution. As a result, the posterior dis-
tribution is also a Dirichlet distribution, and φt

k is considered
as the pseudo-count of the cluster term frequency vector at
time t. Accordingly, the top keywords can be extracted based
on φt

k to represent the cluster at time t.

III. Local Analysis at a Finer Granularity
We have shown how to incrementally infer an HDP model,

and described topic dynamics and their splitting and merging
relationships. Now we illustrate how to analyze document
corpora at a finer granularity. Splitting and merging represent
connections among topics over time. Knowing what are the
most critical events during splitting/merging is of great in-
terest. Besides the critical events, users are also interested in
why clusters split and merge. To facilitate the above analysis
tasks, we propose a method based on the co-occurrence
of semantic words to discern the hidden splitting/merging
reasons. Furthermore, to present the most salient content to
the user, we develop a keyword ranking approach to show
users the content evolution along time.

A. Critical Event Detection

The first type of critical events is cluster birth and death.
The birth of a cluster denotes an emerging topic in the text
stream, while the death of a cluster indicates a disappeared
topic. We can then detect the new topics through finding
the new generated clusters in HDP and the death topics
by identifying the disintegration of the clusters. In our
incremental Gibbs sampling framework, we maintain a hash
table for each time epoch, and the critical events of birth and
death can be easily detected by comparing the hash tables
between the adjacent epochs.

Another non-trivial type of critical events is significant
cluster splitting/merging over time. To extract this type of
critical events, we first rank the splitting/merging events
by using both the number of branches at the related time
points and the entropy of the splitting/merging proportions.
Then we select the ones with the largest ranking scores as

the critical events. Mathematically, the ranking score of the
merging event is formulated as:

R(r, t) = |Nr | · H[Pin
t (s→ r)]

= |Nr | · κB
∑

s∈Nr
Pin

t (s→ r) ln Pin
t (s→ r) (14)

where R(r, t) is the ranking score of cluster r at time t, H[·]
denote the entropy score of a distribution, and κB is the
Boltzmann constant. Nr is the neighborhood set of cluster
r. It consists of the branch clusters that flow into r. and |Nr |

is the number of elements in Nr. Similarly, the ranking score
of the splitting event is defined as:

R(s, t) = |Ns| · H[Pout
t−1(s→ r)]

= |Ns| · κB
∑

r∈Ns
Pout

t−1(s→ r) ln Pout
t−1(s→ r)

(15)
where R(s, t) is the ranking score of cluster s at time t. Ns is
the neighborhood set of cluster s; its elements are the branch
clusters that flows out of s. |Ns| is the number of elements
in Ns.

In each cluster, the time point with more equivalent
branches are more likely to be selected as a critical event
(see Fig. 3).

B. Keyword Ranking

Previous study on keyword ranking methods [14], [15]
has shown that the following two criteria are very useful
in selecting the interesting keywords to represent the topic
content at each time point. First, the keywords at each time
should reflect distinctive content, thus we could observe
the evolving and developing of the topic (distinctiveness).
Second, the keyword sets along time together will cover the
total content of the topic (completeness). In our work, we
follow these two criteria and slightly modify them to adapt to
our incremental batch-mode manner. The rank of a keyword
w in cluster k at time t is given by:

Weight(w)t
k =

TF(w)t
k∑

k TF(w)t
k
· exp (−λ ·Weight(w)t−1

k ) (16)

where w represents a word, TF(w)t
k is the term frequency

of w in cluster k at time t,
∑

k TF(w)t
k is the sum of TF(w)t

k
among different clusters, Weight(w)t−1

k is the weight of w at
time t − 1, and λ is a coefficient which is set to 0.9 in our
system. Note that exp (−λ ·Weight(w)t−1

k ) can be regarded
as a decay factor of each keyword. If a keyword appears at
the last time point with a very high score, it will be ranked
lower at the current time point. Contrarily, if it has not been
shown before, it should be emphasized.

C. Keyword Connection Discovery

Although some text mining problems, such as document
clustering and classification, can be solved by using the bag-
of-words representation [16], the semantics in the text is
still very important for further analyzing and understanding
documents. We represent the semantics in terms of word co-
occurrence in clusters at different time point. This provides



source sink split merge

(a) Legend of graph markers

(b) Visualization of keywords threads and co-occurrence in topic split-
ting and merging. (Red thread represents principle selected keywords,
and blue threads represent related keywords.)

Figure 3. Illustration of critical points and keywords threads.

an intuitive way to help users better understand the clustering
results, as well as why the clusters are connected.

As shown in Fig. 3, each keyword is encoded by a thread
evolving along the topic layer, and a bundle with height
represents the co-occurrence frequency of the related words.

IV. Conclusion

In this paper, we focus on characterizing the relation-
ships among clusters detected from text streams. We first
incrementally derive clusters in text, then we connect the
clusters using splitting and merging patterns. Next, we
develop an incremental HDP Gibbs sampling algorithm to
balance the significance of splitting and merging. Finally, to
better understand why clusters split and merge, we provide
a set of finer granular analysis methods. Specifically, we
identify the critical events and show the co-occurrence of
syntactic or semantic patterns on the trend of clusters. A
visualization is also developed to help user easily interact
with the analysis results and find interesting patterns. In
the future, we will introduce more semantic information
into the clustering results and make the text clusters more
interpretable. Moreover, we would like to study corpora
comparison using the techniques developed in this work.
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