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Abstract—We present an evolutionary multi-branch tree clustering method to model hierarchical topics and their evolutionary patterns

over time. The method builds evolutionary trees in a Bayesian online filtering framework. The tree construction is formulated as an

online posterior estimation problem, which well balances both the fitness of the current tree and the smoothness between trees. The

state-of-the-art multi-branch clustering method, Bayesian rose trees, is employed to generate a topic tree with a high fitness value. A

constraint model is also introduced to preserve the smoothness between trees. A set of comprehensive experiments on real world

news data demonstrates that the proposed method better incorporates historical tree information and is more efficient and effective

than the traditional evolutionary hierarchical clustering algorithm. In contrast to our previous method [31], we implement two additional

baseline algorithms to compare them with our algorithm. We also evaluate the performance of the clustering algorithm based on

multiple constraint trees. Furthermore, two case studies are conducted to demonstrate the effectiveness and usefulness of our

algorithm in helping users understand the major hierarchical topic evolutionary patterns in text data.

Ç

1 INTRODUCTION

DUE to the wide availability of large amounts of stream-
ing text data and their usefulness for decision-making,

there is an increasing need to understand the entire picture
of topics of interest and their relationships over time. For
example, a Microsoft public relations analyst wants to
investigate a number of important Microsoft-related events
that occurred in the first half of 2013: Xbox One was
announced, Motorola sued the company, and Windows 8
was released. To do so, the public relations analyst exam-
ines the news stream to understand the major topics in the
stream and how they have changed and influenced each
other over time. In this way, the analyst can learn whether
their public relations strategies have succeeded.

In many applications, topics are naturally organized in a
hierarchy and the hierarchy often evolves over time [12].
Consequently, there have been some initial efforts to model
such evolving hierarchies. The state-of-the-art approach,
evolutionary hierarchical clustering [12], aims to generate
evolving binary trees to organize the topics at different
times. However, the binary trees may fail to provide inter-
pretable topic results since most of the topic trees in real
world applications are not binary [11], [31]. They are usually
the trees with an arbitrary number of children at each non-
leaf node, which are referred to as multiple branch trees. It
is therefore important to effectively learn an evolving multi-
branch tree representation, providing users a consistent
view of content transitions.

In this paper, we define and study the problem of mining
evolving multi-branch topic trees inside a text stream, as
well as their evolutionary patterns over time. Specifically,
we take a news dataset as an example to illustrate the basic
idea. The dataset contains 66,528 news articles collected
from Bing News [3] using the query word “Microsoft.”
Fig. 1a shows part of the evolving topics and their hierarchi-
cal structures extracted from this dataset. The three labeled
topics are “xbox”(A), “windows”(B), and “sales and earn-
ings”(C). We align the corresponding topics across different
trees according to their content similarity. From the align-
ment edges, we can see the three topics are quite stable dur-
ing this time period, with a few splitting/merging
relationships between them over time. With such evolution-
ary trees and their visual representation in Fig. 1a, users can
easily examine: 1) the evolution of multi-branch trees and their
content alignment over time; and 2) the topics of interest and
their evolving patterns (e.g., splitting/merging) at different
levels of these trees.

To better understand the evolving patterns of user-
selected topics, we leverage a dynamic topic visualization
technique, TextFlow [13], to illustrate the topic merging/
splitting patterns. In this visualization, a river flow meta-
phor is adopted to illustrate topic evolution over time
(Fig. 1b). Each colored layer represents a topic. The varying
layer height along the horizontal axis represents the number
of documents for the topic at each time point. Like a river
flow in the real world, the topic flow can either be split into
several branches when the corresponding topic splits, or
combined with several other branches into one layer when
the corresponding topics merge together. Fig. 1b shows the
splitting/merging patterns of topics “xbox,” “windows,”
and “sales and earnings” from Jan. 8 to Jan. 28. Topics
“windows” and “sales and earnings” merged in the week of
Jan. 15 when Microsoft reported its quarterly revenue. To
discover more information about the merging, we browsed
related news. Some news items reported on the “sales and
earnings” of “windows.” For example, one of the articles
has the title “Windows sales slowdown as Microsoft reports
Q2 revenue up 5 percent.” These two topics split in the next
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week as the association became weaker. Another interesting
pattern is that part of the “windows” topic split itself from
the main topic in the first week and then joined “xbox” in
the next week. The major reason is that Dave Culter, the
father of Windows NT, shifted his focus to Xbox and was
working “to extend xbox beyond its status as a gaming
platform.”

Motivated by this example, we aim to generate a
sequence of multi-branch topic trees that preserves both
the smoothness and fitness. Specifically, each tree in the
sequence should be similar in structure and content to
the one at the previous time point if the data does not
deviate from historical expectations (smoothness). It also
needs to well describe the document distribution at that
time point (fitness). We define the trees that satisfy the
above two requirements as consistent. However, it is
quite challenging to achieve the desired results. First, it is
not trivial to generate evolving multi-branch tree repre-
sentations and to model their evolutionary patterns over
time. Although the state-of-the-art multi-branch cluster-
ing methods [11], [22] can generate a topic tree with a
high fitness value, they cannot guarantee the smoothness
between trees. We define the tree distance of two nodes
in a tree as the shortest path between them in that tree
[12]. With this definition, one way to solve this problem
is to minimize the sum of the tree distance differences
between any two corresponding node pairs at two conse-
cutive time points. This method can improve the smooth-
ness between trees to some extent. However, it may fail
to reconstruct an optimized tree for the current time point
since the parent-child relationships are lost. Second,
online documents (e.g., news articles) arrive regularly
and thus are usually large in number. Since the time

complexity of tree-based algorithms is of polynomial time
[22], it is very time-consuming to generate a sequence of
topic trees that well balances the fitness and smoothness.

To tackle these challenges, we propose an evolutionary
Bayesian rose tree (EvoBRT) algorithm. This work is an
extension of our previous work described in [31]. Previ-
ously, we described how EvoBRT can automatically gener-
ate a sequence of consistent topic trees based on one
constraint tree. In this paper, we focus on EvoBRT’s analytic
lifecycle, especially on its application to large document cor-
pora and the effectiveness of the multi-branch tree cluster-
ing algorithm based on multiple constraint trees. Three key
aspects of EvoBRT are described in this paper.

First, to preserve both the fitness and smoothness
between adjacent trees, we formulate the evolutionary clus-
tering problem as a Bayesian online filtering algorithm. In
this framework, a Bayesian rose tree (BRT) [11] is adopted
to build multi-branch trees, as well as to maintain a high fit-
ness for human understanding. A tree prior is introduced in
the tree learning framework to preserve the smoothness,
which is formulated as a Markov random field (MRF).

Second, a set of experiments are conducted to demon-
strate that our algorithm is more effective and efficient
than the state-of-the-art evolutionary hierarchical cluster-
ing algorithm. Specifically, we implemented two evolu-
tionary multi-branch tree clustering algorithms based on
one constraint tree and multiple constraint trees, respec-
tively, and then evaluated their performance under differ-
ent metrics. We also implemented three baseline methods
and compared them with our algorithm based on one
constraint tree.

Third, we conducted two case studies to demonstrate the
effectiveness and usefulness of our algorithm, especially

Fig. 1. Evolutionary trees of Bing news data (from Jan.8, 2012 - Jul. 21, 2012). We grouped the data by week over the 28-week period. Accordingly,
28 trees were generated. The average tree depth was 4, the average internal node number was 99, and the average node number of the first level
was 21. Here we select part of the evolving trees from Jan. 8 to Mar. 17.
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in support of understanding and analyzing a document col-
lection from the global evolutionary structure to the local
salient features.

2 RELATED WORK

2.1 Constrained Hierarchical Clustering

Based on the constraint type, existing constrained hierar-
chical clustering can be classified into two categories:
pairwise approaches and triplewise approaches. Pairwise
approaches incorporate the constraints in the form of
must-links and cannot-links, which indicate that two sam-
ples must or cannot be in the same cluster [14], [23]. Since
must-links and cannot-links do not consider hierarchical
information, these methods may fail to characterize the
hierarchical document distribution.

Triplewise approaches incorporate triple constraints (e.g.,
two samples must be combined before the other sample is
combined with either of them) among the data to generate
clusters. Existing methods consider two different ways to
use triple constraints, metric-based approaches and instance-
based approaches [7]. Metric-based approaches learn a dis-
tance or similarity metric from the constraints and then
embed the metric in the clustering process [7], [19], [29], [40].
Instance-based approaches follow all triplewise constraints
in the bottom-up merging process and will fail to generate a
hierarchy if one of them is violated [7], [20], [39].

In contrast to the above algorithms, which are
designed for building a static binary tree, our algorithm
aims to generate evolving multi-branch hierarchies. A
multi-branch tree contains both triples and fans, so the
existing approaches do not work since they cannot handle
fans. In addition, our algorithm automatically generates
constraints for each time t based on the tree structure at
t� 1, while the constraints in constrained hierarchical
clustering are predefined.

2.2 Evolutionary Topic Analysis

Recent efforts in topic analysis have focused on developing
advanced machine learning algorithms to extract evolving
topics, such as dynamic latent Dirichlet allocation [9] and its
variations [4], [33], and hierarchical Dirichlet processes [5],
[6], [36], [37], [38]. In many applications, the evolving topics
may be correlated with others by various relationships over
time. The most intuitive relationships are topic correlation
[32] and common topics [34]. These two types of relationships
can help users understand how topics co-evolve with each
other. Based on the hierarchical Dirichlet processes model
and incremental Gibbs sampling algorithm, Gao et al. [13],
[15] proposed an approach to track and connect clusters in
text data. Although the above methods have achieved some
success in modeling a number of evolutionary patterns of
topics, none of them focus on mining evolving trees.

The method most related to ours is the evolutionary hier-
archical clustering algorithm [12]. It measures the difference
between trees by the average distance between all node
pairs. However the tree distance metric is not sufficient to
reconstruct a tree and measure the smoothness between
trees since the parent-child relationships are lost. To tackle
this problem, we introduce two constraints, triples and fans,
into the model to guarantee the high smoothness between

topic trees. In addition, we also choose the Bayesian rose
tree [11] as our base representation to discover multi-branch
structures in text data instead of binary tree structures.

Researchers have also proposed a number of visualiza-
tion methods to better convey complex topic mining results
[13], [18], [21], [26], [35]. For example, TIARA was designed
to visually illustrate individual topic evolutionary patterns
over time [21], [35]. Cui et al. [13] designed a TextFlow visu-
alization to help users better understand topic birth, death,
splitting, and merging patterns. Since we are interested in
the evolutionary patterns of the topics of interest (e.g., split-
ting/merging), we leverage the TextFlow visualization in
our work.

3 BACKGROUND

The base representation of EvoBRT is a multi-branch tree.
We then follow the state-of-the-art approach, Bayesian rose
tree [11] to infer the tree structure. BRT greedily estimates
the tree structure based on probability P ðDjT Þ. Initially,
each document is regarded as an individual tree: Ti ¼ fxig.
Then the algorithm repeatedly selects two trees Ti and Tj

and combines them into a new tree Tm by a join, absorb, or col-
lapse operation [11], aiming to maximize the likelihood ratio:

pðDmjTmÞ
pðDijTiÞpðDjjTjÞ ; (1)

where pðDmjTmÞ is the likelihood of Dm given the tree Tm,
and Dm ¼ Di [ Dj represents all the data under Tm. Here
the likelihood ratio rather than likelihood is employed
because the denominator makes Eq. (1) comparable across
different choices with trees Ti and Tj of different sizes [17].
For a more detailed description of the BRT model, please
refer to [11], [31].

4 EVOLUTIONARY TREE MODELING

As presented previously [31], we reintroduce the overall
process of evolutionary tree construction.

4.1 Algorithm Overview

For each document set Dt ¼ fxt
1;x

t
2; . . . ;x

t
nt
g at time t, we

assume there is an underlying tree Tt that organizes the
documents at t. A previous study [25] has shown that a
Bayesian approach to online learning can minimally reduce
the loss of information from discarding previous examples

at each step. In the meanwhile, Tt needs to preserve both the
fitness and smoothness. Thus we formulate the tree learning
procedure as a Bayesian online filtering process [25]

pðTtjDt; T t�1Þ / pðDtjTtÞpðTtjTt�1Þ: (2)

With this formulation, the new tree Tt depends on both the

likelihood of the current data pðDtjTtÞ and conditional prior

pðTtjTt�1Þ, which measures the difference between Tt and

Tt�1. Accordingly, our model considers both the fitness
and historical smoothness costs, as in the evolutionary hier-
archical clustering algorithm [12]. For the simplicity’s sake,
we first use one-step historical smoothness to illustrate the
basic idea.
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Directly maximizing pðDtjTtÞpðTtjTt�1Þ is intractable
since there are a super-exponential number of candidate
trees for Tt. We therefore follow the greedy construction
method of BRT [11] to select two sub-trees and one of the
three types of combinations (join, absorb, and collapse) to
construct a larger (sub-)tree. The selection aims to maximize
the following posterior test ratio:

p
�Dt

mjTt
m

�
p
�
Tt
mjTt�1

�

p
�Dt

ijTt
i

�
p
�
Tt

ijTt�1
�
p
�Dt

jjTt
j

�
p
�
Tt
j jTt�1

� ; (3)

where Tt
i and Tt

j are two candidate sub-trees that are consid-
ered for generating Tt

m using the three types of combina-

tions, Dt
i and Dt

j are the corresponding document sets, and

Dt
m ¼ Dt

i

S
Dt

j.

The energy function that measures the smoothness cost
of merging Tt

i and Tt
j given Tt�1 is denoted as

VTt�1

��
Tt
i ; T

t
j

� ! Tt
m

�
; (4)

we formulate the conditional tree prior in a recursive way

p
�
Tt
mjTt�1

� ¼ p
�
Tt
mjTt

i ; T
t
j ; T

t�1
�
p
�
Tt
i jTt�1

�
p
�
Tt
j jTt�1

�
; (5)

where

p
�
Tt
mjTt

i ; T
t
j ; T

t�1
�
,

1

Z
exp

�� �VTt�1

��
Tt
i ; T

t
j

� ! Tt
m

��
; (6)

and � is the constraint weight that balances the smoothness
and tree likelihood. Inspired by a simpler Markov random
field defined on flat clusters in [8], we regard the conditional

prior pðTtjTt�1Þ as a Gibbs distribution based on a recur-
sively defined MRF. The energy function of the MRF can be

parameterized as a sum of a set of VTt�1ðfTt
i ; T

t
jg ! Tt

mÞ.
With this parametrization, we rewrite Eq. (3) as

p
�Dt

mjTt
m

�

p
�Dt

ijTt
i

�
p
�Dt

jjTt
j

� � 1
Z
exp

�� �VTt�1

��
Tt
i ; T

t
j

� ! Tt
m

��
: (7)

Since the first term corresponds to the BRT algorithm
(Eq. (1)), the key is then to calculate the second term, the
smoothness cost VTt�1ðfTt

i ; T
t
jg ! Tt

mÞ.

4.2 Constraint Modeling

We introduce the triple- and fan-based constraints to mea-
sure the smoothness cost. A constraint tree is built accord-
ingly for efficient computation.

4.2.1 Triple, Fan, and Constraint Tree

We first introduce some preliminary definitions.

Definition 1. A triple (Fig. 2a) is a sub-tree with three leaf nodes
and two internal nodes. We denote it as abjc where a and b
are the two closest leaf nodes and c is the third leaf node.

Definition 2. A fan (Fig. 2b) is a sub-tree with three leaf nodes
and one internal node. We denote it as ðabcÞ where a, b, and
c are the three leaf nodes.

The relationship between a multi-branch tree and its
related triples/fans (see Fig. 2c as an example) is very
important to reconstruct a tree. As a result, we introduce

the following lemma, which was proposed by Ng and Wor-
mald [24].

Lemma 1. A multi-branch tree T can be uniquely defined by a set
of triples and fans.

Based on this lemma, we measure the smoothness cost by
the number of violated triples/fans between adjacent trees.
A tree with n leaves contains C3

n triples and/or fans. Thus,
directly computing the violation number usually takes

Oðn3Þ memory and Vðn3Þ time, which is very time- and
memory-consuming. To solve this problem, we have built a
tree to organize all the related triples and fans. We call it a
constraint tree.

Definition 3. A constraint tree ~Tt hierarchically organizes the

triples/fans inferred from Dt. It is initialized based on the pre-

vious tree Tt�1 and modified as the corresponding triples/fans
are violated.

4.2.2 Constraint Tree Initialization

The basic idea of initializing the constraint tree ~Tt is to map

each document in Dt to its most relevant topic in Tt�1. For a

document that does not belong to any topic in Tt�1, a new
topic is then generated at t. In our implementation, we pro-
pose two alternative measures to compute the similarity

between xt
i and Dt�1

m . The first is based on the cosine similar-
ity between documents, which is the most commonly used
measure in text mining

simcos

�
xt
i;Dt�1

m

�
, cos

�
xt
i;
X

xt�1
j

�
: (8)

As an alternative, the prediction measure, is based on the
conditional probability of xt

i given Dt�1
m [10]:

simpred

�
xt
i;Dt�1

m

�
, log

Z

u

p
�
xt
iju

�
p
�
ujDt�1

m

�
du: (9)

After mapping all the data xt
i in Dt to Tt�1, we generate a

new tree ~Tt, which is the initialization of the constraint tree.
With this tree, one way to compute the smoothness cost is

as follows: when building a new tree Tt, we compute how
many triples and fans are violated. Although this method is
intuitive, conflicting constraints are ignored when comput-
ing the smoothness cost. For example, given a constraint

tree ~Tt�1 in Fig. 3, if we combine a and d, two types of con-
straint states will be introduced. The first type is violated
constraints. In this example, three triples/fans are violated.
For simplicity’s sake, we take the triple abjd as an example.
This triple indicates that a and b should be combined first
and then they are combined with d. However, if a and d are
combined first, this triple is violated. The second type is
conflicting constraints, which are the triples/fans that

Fig. 2. Tree representation by triples and fans.
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cannot co-exist in the constraint tree. Considering fan ðabcÞ,
if a and d are combined, ðabcÞ conflicts with the triple bcjd
since they cannot both be in this tree.

It is not easy to compute the cost of the conflicting con-
straints since the relationships between them are compli-
cated. For example, one constraint may conflict with
multiple constraints. Moreover, in addition to the pairwise
conflicts, there are triplewise and multiple conflicts. As
shown in Fig. 3, if a and d are combined, then ðabcÞ, acje, and
dejb conflict even though any two of them do not conflict
with each other. As a result, it is hard to measure the corre-
sponding cost even if we list all the conflicting constraints.

4.2.3 Basic Operations and Their Cost

To better measure the cost introduced by violated/conflict-
ing constraints, we define two basic operations, MERGE and
SPLIT on the constraint tree (Fig. 4).

Definition 4. MERGE indicates a sub-tree ~Tk forwards its own data

and children to its parent ~Tl. Then ~Tk itself is removed from the
constraint tree.

Definition 5. SPLIT indicates some children of a sub-tree ~T 0
l redi-

rect their parent to a newly generated child ~Tk of ~T
0
l .

Next, we illustrate the major reason why these two opera-
tions are enough to remove the conflicts from a constraint
tree and make it consistent. For simplicity’s sake, we use a
two-level tree as an example to illustrate the basic idea. BRT
provides three types of combinations, a join, an absorb, and a
collapse [11]. If sub-trees Ti and Tj are combined with a BRT
operation that is different from the one in the constraint tree,
conflicting constraints will be introduced. The basic idea of
avoiding conflicts is to update the constraint tree to make it
consistent with the current data organization. Assume T i

and Tj are combined together in an absorb operation. If they
appear in the constraint tree as shown in Fig. 5B, conflicting
constraints are introduced. To solve them, we change the
constraint tree into the one in Fig. 5C using a MERGE operation.
More examples of using the MERGE/SPLIT operation(s) to mod-
ify the constraint tree are shown in Fig. 5, which demonstrate
that the changes between constraint trees can all be handled
with SPLIT or MERGE operation(s).

With MERGE/SPLIT, we can then measure the cost from con-
flicting constraints by counting the violated constraints in
the two types of operations. The calculation method is given
by the following theorems.

Theorem 1. In a MERGE operation, only triples may be violated,
and violated triples become fans. The number of violated tri-
ples is

Vm

��
~Tk; ~Tl

� ! ~T 0
l

� ¼
��~Dk

��2 �P��~Dki

��2

2

���~Dl

��� ��~Dk

���; (10)

where j~Dkj is the number of leaves in the tree ~Tk.

The proof of the theorem is illustrated in our previous
work [31]. Similarly, we have the following theorem for the
SPLIT operation.

Theorem 2. In a SPLIT operation, only fans may be violated, and
the violated fans become triples. The number of violated fans is:

Vsð ~T 0
l ! f ~Tk; ~TlgÞ ¼ j~Dkj2 �

P j~Dkij2
2

ðj~Dlj � j~DkjÞ: (11)

In the above discussion, we assume that the sub-trees to
be combined are adjacent to each other. In real applications,
however, the two sub-trees may not be adjacent. In such a
case, we first move them to the closest common ancestor via
a sequence of MERGE operations. Once they are under the
same ancestor, we perform the MERGE/SPLIT operation(s) to
make the related constraint tree consistent. The smoothness
cost is then calculated by

VTt�1

��
Tt
i ; T

t
j

� ! Tt
m

� ¼
X

Voptl ; (12)

where optl is a MERGE or a SPLIT operation.

4.3 Extension to Multiple Constraint Trees

In this section, we illustrate how to extend our model to
incorporate multiple constraint trees in the conditional prior

pðTtjDt; T t�1; T t�2; . . .Þ. One major problem with multiple
constraint trees is the conflicting constraints among them,
which may destroy smoothness between trees. Typically,
more constraint trees will introduce more conflicts (Fig. 12).
To resolve conflicting constraints among multiple constraint
trees, we consistently match multiple constraint trees by
extending a error-tolerant pairwise graph matching method
based on graph edit distance [27], which is denoted as fm.

Fig. 3. Two types of constraint states.

Fig. 4. MERGE/SPLIT operations on the constraint tree.

Fig. 5. Update constraint trees by MERGE/SPLIT.
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Specifically, given i constraint trees, { ~Tt�iþ1; . . . ; ~Tt�1; ~Tt},

we first match ~Tt�iþ1 with ~Tt�iþ2. The matched result is
denoted as Mðt� iþ 1; t� iþ 2Þ. We then match Mðt� iþ
1; t� iþ 2Þ with ~Tt�iþ3 and get Mðt� iþ 1; t� iþ 2; t�
iþ 3Þ. We repeat the above matching process and get the
final result Mðt� iþ 1; . . . ; t� 1; tÞ, which is regard as the
input constraint tree of our clustering algorithm.

5 EXPERIMENTS

To demonstrate the performance of our algorithm, we con-
ducted a series of experiments on several real datasets. In
this section, we first introduce the baseline algorithms. Then
the effectiveness of our constraint model is demonstrated.
Next, we illustrate how our algorithm can well preserve
both the fitness (likelihood) and smoothness. After that, we
show that EvoBRT is as efficient as BRT and its variations
in [22]. Finally, we evaluate how multiple constraint trees
impact smoothness. The results show that our algorithm
outperformed the baselines in all aspects that we compared.

In our experiments, if we do not mention the evolution-
ary multi-branch tree clustering method, we used KNN-
EvoBRT (K ¼ 50) due to its efficiency and relatively stable
performance [22]. For each experiment, the rose tree param-
eters with the highest likelihood value were selected
through a grid search.

5.1 Baseline Algorithms

We aimed to evaluate the effectiveness and efficiency of the
proposed tree construction method and the triple- and fan-
based (order) constraintmodel. To this end,we implemented
three baseline algorithms based on the state-of-the-art evolu-
tionary hierarchical clustering method [12] and the Bayesian
hierarchical clustering (BHC) algorithm [16]. Table 1 shows
the combinations of the tree construction method and con-
straint model for different baseline algorithms.

We chose BHC because it can generate more accurate and
balanced hierarchies [16]. The distance constraint model in
[12] was adopted as the baseline constraint model, which is
defined as

log pDistðTtjTt�1Þ
, � �Er;s2leavesðTtÞ

r 6¼s

ðdTtðr; sÞ � d ~Ttðr; sÞÞ2; (13)

where dTtðr; sÞ is the tree distance between r and s,
Er;s2leavesðTtÞ

r 6¼s

denotes the expectation over all distinct leaves,

and � is the constraint weight that balances the smoothness
and tree likelihood.

5.2 Effectiveness of the Constraint Model

The goal of this experiment was to evaluate the clustering
quality of the tree built by our constraint model.

5.2.1 Experimental Settings

In this experiment, we used the 20 Newsgroups dataset [1].
This dataset has a ground-truth hierarchy with two levels of
clusters. In each trial, we randomly sampled 2,000 documents
to form a ground-truth labeled tree.We treated it as the tree at
t� 1. We then sampled 2,000 documents again and mapped
them to the ground-truth labeled tree, which is the initial con-
straint tree in our model. The second dataset of 2,000 docu-
ments is sampled with a specific percentage of overlap with
the first dataset. In our experiment, we considered five over-
lapping ratios that varied from 0 to 1. For each overlapping
ratio, we sampled the two datasets five times and averaged
the results of these five trials. The Bayesian rose tree parame-

ter g was set at 0.1, and aðiÞ ¼ 0:01ði ¼ 1; . . . ; jVjÞ.

5.2.2 Criteria

We evaluated the tree clustering quality using two criteria:
Normalized Mutual Information (NMI) and Cluster Num-
ber Error (CNE). NMI is the most commonly used metric to
measure the clustering quality [30], but may fail in certain
instances, especially when the cluster number difference is
large. For example, the ground-truth contains 50 clusters,
each of which consists of 20 data samples. If the algorithm
builds 1,000 clusters, each of which contains only 1 data
sample, then the NMI value is 0.75. To solve this problem,
we introduced CNE, which measures the cluster number
difference between the generated tree and the ground-truth
tree at each level. The larger the CNE value, the worse the
tree clustering quality. In our experiments, we evaluated
the clustering quality by averaging the NMI/CNE values at
different levels. A clustering result with a larger NMI value
and smaller CNE value has better quality.

5.2.3 Results

We compared our constraint model with the baseline con-
straint model to demonstrate its effectiveness in building
high-quality tree clustering results. We only compared the
results of our algorithm with those of MultiDistance because
the ground-truth tree is multi-branch. In each experiment,
we also compared the results with the overlapping ratios 0,
0.5, and 1. Fig. 6 shows how the tree clustering quality

TABLE 1
Baseline Algorithms

Baselines Tree Construction Method Constraint Model

BinaryDistance Evolutionary binary Distance
BinaryOrder Evolutionary binary Order
MultiDistance Evolutionary multi-branch Distance

Fig. 6. Tree clustering quality comparison.
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changed with different constraint weights � (Eq. (6)) for
both algorithms. As indicated by the results, our algorithm
is much more effective than MultiDistance. When the data
overlapping ratio is 1, we can reconstruct the ground-truth
labeled tree. Even if the overlapping ratio is 0, our algorithm
still maintains a larger NMI (0.7) and a smaller CNE (near
0), while MultiDistance has a smaller NMI (0.5) and much
larger CNE (650). In our algorithm, both NMI and CNE
become better as the constraint weight increases. In
MultiDistance, the NMI becomes better with the increase of
the constraint weight, while the CNE gets worse with the
increase of the constraint weight.

5.3 Tree Likelihood vs. Smoothness

In this experiment, we aimed to demonstrate that our algo-
rithm preserves both the fitness and smoothness.

5.3.1 Experimental Settings

In this experiment, we used New York Times news articles
(from Jan. 2006 to Jan. 2007) [2]. We grouped the data into
nine segments, each of which contained 2 months of articles.
We randomly sampled 1,000 documents from each time
segment. To eliminate the randomness caused by sampling,
we sampled the data five times and ran the experiment five
times. The results were computed by averaging the results
of the five trials. Parameters g and aðiÞ were set at 0.03 and
0.0005.

5.3.2 Criteria

We used the likelihood to measure the fitness of a tree. We
also introduced three metrics to measure the smoothness
between adjacent trees.

Order smoothness (SOrder). This metric is defined based on
the smoothness cost of our algorithm. It is the negative
value of the violated triples/fans compared with the previ-

ous tree: SOrder ¼ 1
� logðpðTtjTt�1ÞÞ.

Distance smoothness (SDist). This metric is defined based
on the smoothness cost of the baseline constraint model. It

measures the tree structure difference by aggregating the
tree distance difference between two corresponding leaf

pairs of the adjacent trees: SDist ¼ 1
� logðpDistðTtjTt�1ÞÞ.

Robinson-foulds smoothness (SRF ). This metric is based on
the widely used Robinson-Foulds distance metric for phylo-
genetic trees [28]

SRF ¼ 1� dRF ðTt; T t�1ðDtÞÞ þ dRF ðTt�1; T tðDt�1ÞÞ
2

; (14)

where Tt�1ðDtÞ represents the constraint tree built on Tt�1

and data Dt.

5.3.3 Results

Two sequences of binary trees (average tree depth: 366)
and two sequences of multi-branch trees (average tree
depth: 5) were built using our algorithm and the baseline
algorithms, respectively. Fig. 7 shows how the smooth-
ness scores changed with the likelihood of the four algo-
rithms. We did a grid search of eight constraint weights
for these algorithms. Since different constraint models
usually need different parameters, we used two different
sets of control weights in this experiment. The constraint
weights for our algorithm and BinaryOrder were f3e�6;

1e�5; . . . ; 3e�3; 1e�2g. While the constraint weights for

MultiDistance and BinaryDistance were f1e�25; 1e�20; . . . ;

1e10g. The larger the constraint weight, the more emphasis
was put on the smoothness factor. In each of the figures,
we connected the points in the order of increasing con-
straint weights. Based on an analysis of the results, we
have drawn the following conclusions.

First, our algorithm can generate a much smoother tree
sequence than the baseline algorithms while maintaining
larger likelihood scores. In addition to performing very well
under the metric of SOrder, our algorithm also achieved a
comparable performance under the metrics of SDist and
SRF . This demonstrates that triples and fans contain all the
hierarchical information of a multi-branch tree and thus the

Fig. 7. Comparison of the smoothness and likelihood with different constraint weights.
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cost function based on them is very effective at preserving
both the smoothness and fitness. MultiDistance performed
reasonably well under the metric of SDist. However, it
failed to get a good result under the metrics of SOrder and
SRF . This is due to the fact that tree distance constraints
do not consider parent-child relationships in a tree.
BinaryOrder and BinaryDistance did not perform well in
terms of both the likelihood and smoothness. The lower
likelihood scores indicate that the binary model does not
well fit the document distribution at each time point. This
result is consistent with the results shown by Blundell
et al. [11]. The lower smoothness scores indicate that the
binary tree model is more sensitive to noise. By examin-
ing the results, we found the structures of the generated
binary trees often changed a lot between adjacent times.
Furthermore, BinaryOrder generated smoother structures
compared with BinaryDistance, which demonstrates that
the triple- and fan-based constraint model outperformed
the distance-based constraint model.

Second, the smoothness of our algorithm increases con-
sistently with the increase of the constraint weight, while
the likelihood increases at first and then decreases. This
indicates that incorporating a certain amount of historical
information actually helps to increase the fitness. The major
reason for this is that the highly reliable triples/fans are
kept in the current tree and they can help the greedy algo-
rithm find a better solution. However, MultiDistance does
not exhibit a similar pattern. Even if the constraint weight
increases, the smoothness between trees is not guaranteed.
This is because the baseline constraint model does not well
consider multi-branch structures and does not handle con-
flicting constraints. Similarly, the smoothness score of
BinaryOrder increases with the increase of the constraint
weight while that of BinaryDistance did not, which again
demonstrated that the triple- and fan-based constraints per-
formed better.

Next, we found that our algorithm can well preserve
both the smoothness and likelihood at each time point. The
result was the average values of the eight trails with differ-
ent constraint weights. As shown in Figs. 8b, 8c, and 8d, our
algorithm outperformed MultiDistance in term of the

smoothness at almost every time point. In addition,
MultiDistance also performed better in preserving the
smoothness than the KNN-BRT method, which simply per-
formed KNN-BRT at each time point. As for the likelihood,
our algorithm andMultiDistancewere as good as KNN-BRT
(Fig. 8a). This demonstrates again that our algorithm can
preserve the smoothness between trees without sacrificing
the likelihood of each tree. We further compared our
algorithm with the binary-based algorithms. As shown in
Figs. 9b, 9c, and 9d, our algorithm outperformed
BinaryDistance and BinaryOrder in term of the smoothness
at almost every time point. In addition, BinaryDistance and
BinaryOrder also worked better at preserving the smooth-
ness than the BHC method. As for the likelihood, our algo-
rithm performed better than BinaryDistance, BinaryOrder,
and BHC (Fig. 9a). This again demonstrates that the binary
tree model does not well fit the document distribution at
each time.

5.4 Efficiency

In this section, we first demonstrated that our algorithm was
more efficient than MultiDistance and BinaryDistance, and
comparable with BindaryOrder. Then we compared the run
time of our algorithm with different constraint weights. The
experimental results showed that EvoBRT was as efficient
as BRT.

5.4.1 Experimental Settings

We randomly sampled 100,000 documents from the New
York Times corpus and evaluated the efficiency of our
model based on BRT, KNN-BRT, and SpillTree-BRT. We
classified the data into two groups. The first was for con-
structing a constraint tree and the second was for building a
new tree based on the constraint tree. The vocabulary size
used in the experiment was 665,261.

5.4.2 Results

As shown in Fig. 10a, our algorithm outperformed
MultiDistance in terms of efficiency. Its performance was
also comparable to KNN-BRT. Figs. 10b, 10c, and 10d show

Fig. 8. Comparison of the smoothness and likelihood at different times (our algorithm and multi-branch algorithms).
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the run time of EvoBRT, KNN-EvoBRT, and SpillTree-
EvoBRT, respectively. We also compared the implementa-
tions with different constraint weights. The results again
demonstrates that the performance of our algorithm was
comparable to the three BRT-based algorithms. In this
example, when the constraint weight was small (i.e., 1e-10),
our algorithm was similar to the BRT-based algorithm in
terms of efficiency. When the constraint weight was large,
our algorithm was even faster for a corpus with a larger
number of documents. After checking the results with the
faster run time, we found their constraint trees were quite
balanced. A balanced constraint tree leads to a balanced
tree structure. Typically, BRT and its variations can build a
balanced tree much faster. Due to the complexity of our
algorithm, it can also handle larger scale datasets in a rea-
sonable amount of time.

5.5 Multiple Constraint Trees

In some applications, it may require users to keep track of
the evolution of a certain sub-tree that has already existed
for some time. For example, in the first half of 2013, the
topics “windows,” “xbox,” and “sales and earnings” co-
occurred for several months. Assume that a Microsoft pub-
lic relations manager is interested in understanding the tem-
poral correlations of these topics in the second half of 2013.
Then s/he can gradually learn whether the public relations
strategies of the company have succeed on the major prod-

ucts. To this end, it is required to preserve the frequent sub-
tree structures by using multiple constraint trees. In this
experiment, we aim to evaluate the usage of multiple con-
straint trees, as well as how the number of constraint trees
impacts the smoothness. The experimental settings were the
same with that of Section 5.3. We leveraged the last NC

trees. In our experiment, we set 1 � NC � 5.

5.5.1 Criteria

We extended the previous smoothness metrics (Section 5.3)
to measure the smoothness between Tt and Tt�k:

Sk
Order ¼

1

�
logðpOrderðTtjTt�kÞÞ; (15)

Sk
Dist ¼

1

�
log ðpDistðTtjTt�kÞÞ; (16)

Sk
RF ¼ 1� dRF ðTt; T t�kðDtÞÞ þ dRF ðTt�k; T tðDt�kÞÞ

2
; (17)

where k is the step size between trees. Here the smoothness
between non-adjacent trees was also considered for better
tracking of the sub-trees of interest over time.

5.5.2 Results

Figs. 11a, 11b, and 11c show how smoothness changed with
the number of the constraint trees used. It can be seen that

Fig. 9. Comparison of the smoothness and likelihood at different times (our algorithm and binary-based algorithms).

Fig. 10. Efficiency comparison: (a) comparison of different methods (KNN); (b) EvoBRT and BRT; (c) KNN-EvoBRT and KNN-BRT; (d)
SpillTree-EvoBRT and SpillTree-BRT.
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more constraint trees usually led to the better smoothness
between trees whose step sizes were greater than 1. How-
ever, too many constraint trees will reduce the smoothness
between trees. For example, when Nc ¼ 5, the smoothness
decreased under the three metrics. This is because more
constraint trees will introduce more conflicting constraints
(Fig. 12), which will lead to lower smoothness scores
between trees.

Next, we evaluate how the proposed graph matching
techniques can help resolve the conflicting constraints
among trees and influence both the likelihood and smooth-
ness. In this experiment, we changed the error tolerance
(conflict ratio) from 0 to 1 with a step of 0.1. As shown in
Fig. 13, the likelihood value decreased as the conflict ratio
increased. In the meanwhile, for all the three smoothness
metric, the smoothness value also decreased as the conflict
ratio increased. This demonstrates that more conflicting
constraints lower both the likelihood and smoothness of our
clustering algorithm.

6 APPLICATIONS

We conducted two case studies on news data to demon-
strate the usefulness of our approach.

6.1 Statistics Summary and Comparison

We first compared various statistics between our algorithm
and the baseline algorithms on the two datasets used in the
case studies. The first one is the Microsoft dataset, which is
introduced in Section 1. The second dataset contains 288,423

news articles on the European debt crisis (from Feb. 1 to Jul.
24, 2012). We grouped the data by week and generated
25 trees. The average tree depth was 4, the average internal
node number was 276, and the average node number of the
first level was 77.

We also briefly illustrated the major advantages of our
algorithm. For each algorithm, we did a grid search of g and
a and selected the one that yields the largest likelihood. We
further did a grid search of the constraint weight and
manually select the one that well balances the fitness and
smoothness. As shown in Tables 2 and 3, our algorithm out-
performed the three baselines in terms of both the likeli-
hood and smoothness. This conclusion is consistent with
that derived by the experiments in Section 5.3.

The statistics summary of the tree structure such as tree
depth, the node number of the first level, and the internal
node number, together with the smooth values indicate
that our algorithm generates the most balanced and
smooth trees across time. The topic trees generated by
BinaryDistance and BinaryOrder were very deep (larger

Fig. 11. Comparison of the smoothness and likelihood with different numbers of constraint trees.

Fig. 12. More constraint trees introduce more conflicts.
Fig. 13. Evaluation of the graph matching method for resolving conflicts
among constraints.

1542 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 6, JUNE 2015



than 100 levels in both datasets) with only two topics at the
first level of the tree (n1) and thousands of internal nodes
(n2). Such tree structures are spurious and thus hard for
people to understand [22]. Moreover, BinaryDistance and
BinaryOrder often generates trees (at different time points)
with significantly varying tree depths, which makes it hard
for human understanding and tracking. For example, the
“windows” hierarchy generated by BinaryDistance had a
depth of 141 in the first week and changed to 46 in the
second week.MultiDistance generated the flattest trees, with
many topics at the first level. For the European debt crisis
dataset, the topic trees generated by MultiDistance have
averagely 187 nodes at the first level, which introduce some
unnecessary fine-grained or even overlapping topics at
the first level. For example, the “economy” hierarchy in
Fig. 16 contains only one node at the first level, while the
one generated by MultiDistance contains 6 nodes, “shares,
spain, rate,” “index, recession, april,” “oil, energy, crude,”
“oil, crude, barrel,” “gold, fed, precious,” and “gold, price,
bet,” at the first level. After examining the related news
articles, we found both “oil, energy, crude” and “oil, crude,
barrel” were talking about oil trading and should be merged
into one topic. So are “gold, fed, precious” and “gold, price,
bet.” Furthermore, too many fine-grained and overlapping
topics make it difficult to understand the overall evolution-
ary patterns of the “economy” hierarchy over time.

6.2 Microsoft Data

The first application aims to illustrate how hierarchical
structures can help analyze a document collection from
global evolutionary patterns to local, finer-grain topics. We
briefly looked at the global patterns in the introduction
(Fig. 1). In Fig. 1b, part of “xbox” splits from its main topic
in the first week and merges with “windows” in the second
week. To understand the underlying causes, we focused on
the corresponding sub-trees of the “xbox” topic (T1) and
“windows” topic (T2). As shown in Fig. 14, “xbox” has two
second-level sub-topics. One is the Ultimate Fighting Cham-
pionship (UFC) launched on Xbox (A), another is major

products of Xbox (B), including “Xbox Live” (B1), “Xbox
720” (B2), and “Xbox 360” (B3). From the alignment edges,
we saw that topic B was involved in the interaction with
“windows.” To examine exactly which products were
involved, we checked sub-topics B1, B2, and B3 and found
there were two alignment edges between the third-level
topics of “xbox” and “windows.” One alignment edge was
between “Xbox Live” (B1) and “Windows phone” (C1). By
browsing the relevant news articles, we found the align-
ment was caused by the discussion that the “Must Have
Games” initiative returned for Windows Phone. Another
alignment edge was between “Xbox 360 sales” (B3) and
“Windows sales” (C2). This is due to people frequently
compared the success of Xbox 360 sales with the slumps on
Windows sales when Microsoft reported its second quarter
revenue (“Server and Xbox Overcome Windows Weakness
in Microsoft’s 2Q”).

6.3 European Debt Crisis Data

The second application is for demonstrating how EvoBRT
can help analyze hierarchical evolutionary patterns at dif-
ferent granularities. Fig. 15 shows the evolutionary patterns
of the selected first-level topics. It conveys four major
topics “fund” (red), “economy” (green), “greece” (yellow),

TABLE 2
Statistics Summary of Microsoft Data

Likelihood SOrder SDist SRF Running time (s) nd [min, max] n1 n2

BinaryDistance �987123.01 �12052929.74 �123.42 0.91759 479.51 111 [38, 295] 2 2375
BinaryOrder �965588.08 �465636.32 �116.45 0.9109070 478.07 117 [35, 362] 2 2375
MultiDistance �952959.24 �2719459.86 �1.21 0.961792 977.19 4 [3, 7] 53 103
Ours �916420.34 �104211.85 �0.72 0.964418 651.71 4 [3, 5] 21 99

nd represents the average tree depth, n1 represents the average node number of the first level, and n2 represents the average internal node number.

TABLE 3
Statistics Summary of the European Debt Crisis Data

Likelihood SOrder SDist SRF Running time (s) nd [min, max] n1 n2

BinaryDistance �4603529.80 �1099465912.72 �793.13 0.941171 9409.47 123 [73, 235] 2 11536
BinaryOrder �4572004.32 �13693773.8 �709.88 0.947099 11709.53 215 [136, 281] 2 11536
MultiDistance �4333273.41 �49185577.18 �2.32 0.972980 44480.8 4 [3, 15] 187 468
Ours �4292360.54 �343917.64 �0.24 0.977457 27213.76 4 [3, 7] 77 276

nd represents the average tree depth, n1 represents the average node number of the first level, and n2 represents the average internal node number.

Fig. 14. Detailed information of sub-trees T1 and T2 in Fig. 1. The align-
ment edges are encoded by red curves.
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and “china” (purple). According to the change degree of
topic “greece,” we divided the timeline into two periods. In
the first period, “greece” had fewer interactions with the
others; while in the second period, this topic had more inter-
actions with the others. We were interested in discerning
what caused this, so we studied the topic “greece” carefully.
The first period of “greece” concerned the bailout for
Greece. The bailout was provided by European countries to
help Greece to reduce debt. During this period, the topic
was relatively independent and gradually shrank because
the discussion on the bailout had come to an end in the
week of Feb. 15 (“$170B Greek bailout approved”), although
it was finally settled in the week of Mar. 14. The second
period of “greece” concerned the Greek election. Greece
failed to form a government in the first election on May 6.
This failure increased the danger of a Greek exit, which will
largely aggravate the Eurozone crisis. (“Could the euro sur-
vive a Greek exit?”). Because of the severity of the issue, the
topics in this period were very active and interacted with
each other frequently.

Since Greece leaving the EU would be a disaster, we
studied the second period in detail. More exactly, we drilled
in to the topic “economy” that had the most interactions
with “greece.” Fig. 16 shows its topic hierarchies from Apr.
25 to May 15, where “greece” and “economy” had rich inter-
actions with each other. There were three second-level

sub-topics under the node “economy” during this period:
“gold” (A), “oil” (B), and “stock” (C). We found that all of
the sub-topics were influenced by “greece” after the first
Greek election on May 6. The content of “gold” (A) changed
gradually with more emphasis on the keywords “greece”
and “low.” For example, one of the news articles had the
title of “Gold falls to 4-1/2 month low on Greece risks.” “Oil”
(B) displayed a similar evolution to that of “gold.” One of
the related news items was “Oil price at lowest of year:
Greece, European debt crisis blamed.” Moreover, the struc-
ture of “oil” grew and generated two third-level sub-topics
in the week of May 9. One of them was talking about palm
oil and the other was about crude oil (D). “Stock” (C) grew
much larger during this period, from two levels to four lev-
els. A new third-level sub-topic “currency” (E) appeared
under “stock,” describing how the danger of the Greek exit
was affecting the currencies of other countries, including
New Zealand (“NZ dollar falls as Greek woes heat up”),
Australia (“Australian dollar drops 1 percent”), and India
(“Rupee hits all time low of 54.46”). A new fourth-level sub-
topic “commodities” (F) appeared under “stock” because
“post-election turmoil in Europe drove down stocks and
commodities; Dow ends down 76.” One of the sub-topics,
G, under “stock,” moved to the fourth level, with more child
topics, indicating more discussion on how the Greece exit
would impact the stocks in Europe (“European stocks fall

Fig. 16. The “economy” hierarchies. Each sub-tree grows over time due to the intensive discussion of the Greek exit.

Fig. 15. Visualization of European debt crisis data (Feb. 1 to Jul. 24). The timeline is divided into two periods. In the first period, the topics are rela-
tively independent. In the second period, the topics frequently interact with each other.
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sharply amid Greece woes”), Asia (“Asia stocks fall Amid
political turmoil in Greece”), Australia (“Australian stocks
end lower on Greek concerns”), and the U.S (“U.S. stock-
index futures decline on Greece’s political impasse”). This
example shows that our approach can better illustrate the
growth of a topic tree over time, including its content and
interactions with each other.

7 CONCLUSIONS

In this paper, we present an evolutionary multi-branch
hierarchical clustering algorithm, EvoBRT, to automati-
cally learn dynamic tree structures over time. We lever-
age a Bayesian online filtering framework to formulate
our evolutionary clustering problem. To build multi-
branch trees, we adopt the state-of-the-art multi-branch
tree clustering method, Bayesian rose trees. To preserve
the tree smoothness over time, we use the conditional
prior over the tree structures to retain the information
from previous trees. Particularly, we introduce the con-
cepts of triples and fans, which can uniquely represent a
multi-branch tree. To efficiently compute the tree struc-
ture differences, we define a constraint tree from triples
and fans, as well as the corresponding operations to
make it consistent over time.

Our experiments show that our algorithm outperforms
the traditional evolutionary hierarchical clustering algo-
rithm both in tree clustering quality and construction effi-
ciency. The complexity analysis demonstrated that our
algorithm can be applied to large-scale datasets. Moreover,
two case studies on news data showed that using evolution-
ary multi-branch tree clustering can help users find many
interesting evolutionary patterns of tree structures at differ-
ent granularities.
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