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Abstract—In this paper, we propose a novel constrained coclustering method to achieve two goals. First, we combine information-

theoretic coclustering and constrained clustering to improve clustering performance. Second, we adopt both supervised and

unsupervised constraints to demonstrate the effectiveness of our algorithm. The unsupervised constraints are automatically derived

from existing knowledge sources, thus saving the effort and cost of using manually labeled constraints. To achieve our first goal, we

develop a two-sided hidden Markov random field (HMRF) model to represent both document and word constraints. We then use an

alternating expectation maximization (EM) algorithm to optimize the model. We also propose two novel methods to automatically

construct and incorporate document and word constraints to support unsupervised constrained clustering: 1) automatically construct

document constraints based on overlapping named entities (NE) extracted by an NE extractor; 2) automatically construct word

constraints based on their semantic distance inferred from WordNet. The results of our evaluation over two benchmark data sets

demonstrate the superiority of our approaches against a number of existing approaches.

Index Terms—Constrained clustering, coclustering, unsupervised constraints, text clustering

Ç

1 INTRODUCTION

CLUSTERING is a popular technique for automatically
organizing or summarizing a large collection of text;

there have been many approaches to clustering [1]. As
described below, for the purpose of our work, we are
particularly interested in two of them: coclustering and
constrained clustering.

Unlike traditional clustering methods that focus on 1D

clustering, coclustering examines both document and word

relationship at the same time. Previous studies have shown

that coclustering is more effective than 1D clustering in

many applications [2], [3], [4], [5].
In addition to coclustering approaches, researchers have

also developed constrained clustering methods to enhance

document clustering [6], [7]. However, since purely un-

supervised document clustering is often difficult, most

constrained clustering approaches are semi-supervised,

requiring the use of manually labeled constraints.
To further enhance clustering performance, there has also

been some effort on combining coclustering and constrained
clustering [8], [9], [10]. However, there are two main
deficiencies in the existing methods. First, they all optimize

a sum squared residues-based objective function, which has
been shown to be not as effective as KL-divergence [11].
Kullback-Leibler divergence (KL-divergence) on text is
defined on two multinomial distributions and has proven
to be very effective in coclustering text [11]. Second, they all
use semi-supervised learning that requires ground-truth or
human annotated labels to construct constraints. In practice,
however, ground-truth labels are difficult to obtain, and
human annotations are time consuming and costly. As a
result, it is important to investigate methods that can
automatically derive constraints based on existing knowl-
edge sources. Next, we describe how we extend the work in
[12] to address the above issues.

When clustering textual data, one of the most important
distance measures is document similarity. Since document
similarity is often determined by word similarity, the
semantic relationships between words may affect document
clustering results. For example, sharing common named
entities (NE) among documents can be a cue for clustering
these documents together. Moreover, the relationships
among vocabularies such as synonyms, antonyms, hyper-
nyms, and hyponyms, may also affect the computation of
document similarity. Consequently, introducing additional
knowledge on documents and words may facilitate docu-
ment clustering. To incorporate word and document
constraints, we propose an approach called constrained
information-theoretic coclustering (CITCC). It integrates
constraints into the information theoretic coclustering
(ITCC) framework [4], where KL-divergence is adopted to
better model textual data. The constraints are modeled with
two-sided hidden Markov random field (HMRF) regular-
izations. We develop an alternating expectation maximiza-
tion (EM) algorithm to optimize the model. As a result,
CITCC can simultaneously cluster two sets of discrete
random variables such as words and documents under the
constraints extracted from both sides.
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In summary, the main contributions of this paper are
twofold.

. We proposed a new constrained coclustering algo-

rithm CITCC: 1) It performed better than the existing
coclustering algorithms because it allows the system

to incorporate additional constraints to guide the

clustering towards the ground-truth; 2) it performed

better than the existing 1D constrained clustering

methods since it can take advantage of the co-

occurrences of documents and words; 3) it per-

formed better than the existing constrained coclus-

tering approaches on text data since it optimizes a
KL-divergence based objective function versus a

euclidean distance-based function that is commonly

used by other systems.
. We proposed two novel methods to automatically

construct and incorporate constraints into CITCC to

help improve document clustering performance.

Since both the constraints are automatically con-

structed by the system, it performs purely unsuper-

vised document clustering. More specifically: 1) we

automatically construct document constraints based
on the overlapping named entities extracted by an

NE extractor; 2) we automatically construct word

constraints based on their semantic distance inferred

from WordNet. We have also conducted compre-

hensive evaluations over two benchmark data sets

and the evaluation results demonstrated the super-

iority of our algorithm.

In the rest of the paper, following a review of the existing

works, we describe the details of the proposed CITCC

approach and the two new algorithms to automatically

construct word and document constraints from existing

knowledge sources. We then describe how we evaluate the

effectiveness of the proposed methods using both super-

vised and unsupervised constraints. Finally, we conclude

the paper with a summary and our plans for future work.

2 RELATED WORK

Existing works that are most relevant to ours fall into three
categories: coclustering, semi-supervised clustering, and
constrained coclustering with unsupervised constraints. In
this section, we briefly summarize the works in each category.

2.1 Coclustering

Most coclustering algorithms deal with dyadic data,
e.g., the document and word co-occurrence frequencies.
The dyadic data can be modeled as a bipartite graph, and
then spectral graph theory is adopted to solve the partition
problem [3]. The co-occurrence frequencies can also be
encoded in co-occurrence matrices and then matrix factor-
izations are utilized to solve the clustering problem [5], [13].
The document and word co-occurrence can also be
formulated as a two-sided generative model using a
Bayesian interpretation [14], [15]. Moreover, Dhillon et al.
[4] modeled the coclustering algorithm as an information-
theoretic partition, which is mathematically equivalent to
the empirical joint probability distribution of two sets of

discrete random variables. Later, Banerjee et al. [11]
extended this method to a general Bregman coclustering
and matrix factorization framework.

2.2 Semi-Supervised Clustering

There are two types of semi-supervised clustering methods:
semi-supervised clustering with labeled seeding points [16],
[17], [18] and semi-supervised clustering with labeled
constraints [19], [20], [21], [22], [23], [7]. Constraint-based
clustering methods often use pairwise constraints such as
“must-links” and “cannot-links” to enhance unsupervised
clustering algorithms. Although these constraints are also
called “side-information,” most of them are built on human
provided labels and the clustering methods are thus
considered as semi-supervised learning [6].

While the above semi-supervised methods are applicable

to 1D clustering, we are more interested in coclustering. For

text data, coclustering can not only show the relationship

between document and word clusters, but also leverage the

knowledge transferred between the two sides [24]. There

are some initial efforts on extending the existing cocluster-

ing methods to semi-supervised coclustering and con-

strained coclustering [8], [9], [10], [25]. Most of these

methods are based on matrix factorizations that optimize

a sum squared residues-based objective function. It has

been reported that among the existing coclustering meth-

ods, the ITCC algorithm that uses KL-divergence is

empirically more effective in analyzing sparse and high-

dimensional text data than those methods that use

euclidean distance [11]. As a result, we focused this work

on extending the ITCC framework to incorporate both

document and word constraints.

2.3 Unsupervised Constrained Clustering

Recently, some research has been conducted to handle

constraints automatically derived based on either human-

provided meta data or existing knowledge sources (e.g., the

ontology in Wikipedia, or the social tagging on images.)

More specifically, Li et al. demonstrated that the ACM

keyword taxonomy can help cluster scientific papers using a

nonnegative matrix factorization (NMF) approach [26]. They

suggested that the knowledge of scientific conference

categories can be transferred from the word side to the

document side. Moreover, Li et al. showed that sentiment

words can help semi-supervised sentiment classification

using NMF [27]. Yang et al. proposed a new algorithm to

handle noisy constraints that are derived from the links

between citations [28]. More recently, Shi et al. [25] proposed

a constrained spectral coclustering approach which can also

incorporate unsupervised word constraints. The method

first conducts a coclustering algorithms on a fine-labeled

corpus. Then it constructs the word constraints based on the

word categories learned from the axillary corpus.
Unlike these approaches, we add must-links for docu-

ments when two documents have many overlapped NEs.
While for word constraints, we add must-links if the two
words are close to each other semantically, which is
measured by a WordNet-based semantic similarity.
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3 THE CITCC METHOD

In this section, we first describe how we formulate the

constrained coclustering problem as a two-sided HMRF

regularized ITCC (HMRF2-ITCC) model. Then we present

how to use an alternating EM algorithm to optimize the

model.

3.1 Problem Formulation

We denote the document set and word set as D ¼ fd1;

d2; . . . ; dMg and V ¼ fv1; v2; . . . ; vV g. Then the joint prob-

ability of pðdm; viÞ can be computed based on the co-

occurrence count of dm and vi. For hard clustering

problems, as illustrated by Dhillon et al. [4], a function

qðdm; viÞ ¼ pðd̂kd ; v̂kvÞpðdmjd̂kdÞpðvijv̂kvÞ; ð1Þ

where d̂kd and v̂kv are cluster indicators, kd and kv are the

cluster indices, is used to approximate pðdm; viÞ by mini-

mizing the Kullback-Leibler (KL) divergence

DKLðpðD;VÞkqðD;VÞÞ
¼ DKLðpðD;V; D̂; V̂ÞkqðD;V; D̂; V̂ÞÞ

¼
XKd

kd

X
dm:ldm¼kd

pðdmÞDKLðpðVjdmÞkpðVjd̂kdÞÞ

¼
XKv

kv

X
vi:lvi¼kv

pðviÞDKLðpðDjviÞkpðDjv̂kvÞÞ;

ð2Þ

where D̂ and V̂ are the cluster sets, pðVjd̂kdÞ denotes a

multinomial distribution based on the probabilities

ðpðv1jd̂kdÞ; . . . ; pðvV jd̂kdÞÞ
T , pðvijd̂kdÞÞ ¼ pðvijv̂kvÞpðv̂kv jd̂kdÞ and

pðvijv̂kvÞ ¼ pðviÞ=pðlvi ¼ v̂kvÞ. Symmetrically, we can define

the probability for words: pðDjv̂kvÞ denotes a multinomial

distribution based on the probabilities ðpðd1jv̂kvÞ; . . . ;

pðdV jv̂kvÞÞ
T , pðdijv̂kvÞÞ ¼ pðdijd̂kdÞpðd̂kd jv̂kvÞ and pðdijd̂kdÞ ¼

pðdiÞ=pðldi ¼ d̂kdÞ.
As shown in Fig. 1, we introduce two latent label sets

Ld ¼ fld1
; ld2

; . . . ; ldMg for documents and Lv ¼ flv1
; lv2

; . . . ;

lvV g for words. Then the original ITCC can be mathemati-

cally formulated as the log-likelihood of a conditional

probability in the exponential family

pðD;VjLd;LvÞ
¼ exp �DKLðpðD;V; D̂; V̂ÞkqðD;V; D̂; V̂ÞÞ

� �
b�KLð�Þ;

ð3Þ

where b�KLð�Þ is a normalization constant determined by its

divergency type [11].

For the constrained clustering problem, we use HMRF to
formulate the prior information for both document and
word latent labels. As illustrated in Fig. 1, the “must-links”
and “cannot-links” for both documents and words are
encoded in the HMRFs. In the following, we focus on
deriving the constraints for Ld. It is easy to generalize the
derivation to Lv.

First, for latent label ldm , the must-link set is denoted as

Mdm , and the cannot-link set as Cdm . The neighbor set of ldm
is denoted as N dm ¼ fMdm ; Cdmg. Then the latent labels ldm
(m ¼ 1; . . . ;M) construct a neighborhood graph and the

random field defined on this graph is a Markov random

field, following the Markov property: pðldm jLd � fldmgÞ ¼
pðldm jldm 2 N dmÞ. As a result, the configuration of the latent

label set can be expressed as a Gibbs distribution. Following

the generalized Potts energy function and its extension [22],

we have

pðLdÞ ¼
1

Zd
exp �

XM
dm1

X
dm2
2N dm1

V ðdm1
; dm2
Þ

0
@

1
A: ð4Þ

For must-links, the energy function is defined as

V ðdm1
; dm2

2 Mdm1
Þ

¼ am1;m2
DKLðpðVjdm1

ÞkpðVjdm2
ÞÞ � Ildm1

6¼ ldm2
;

ð5Þ

and for cannot-links, the energy function is formulated as

V ðdm1
; dm2

2 Cdm1
Þ

¼ �am1;m2
ðDmax �DKLðpðVjdm1

ÞkpðVjdm2
ÞÞÞ � Ildm1

¼ ldm2
;

ð6Þ

where pðVjdm1
Þ denotes a multinomial distribution based on

the probabilities ðpðv1jdm1
Þ; . . . ; pðvV jdm1

ÞÞT , Dmax is the

maximum value for all the DKLðpðVjdm1
ÞkpðVjdm2

ÞÞ, am1;m2

and �am1;m2
are tradeoff parameters to be set empirically, and

Itrue ¼ 1, Ifalse ¼ 0.

Consequently, the constrained coclustering problem

can be formulated as an MAP estimation for label

configurations

pðLd;LvjD;VÞ / pðD;VjLd;LvÞpðLdÞpðLvÞ: ð7Þ

As we have two HMRF priors for Ld and Lv, we call this

two-sided HMRF regularization. Mathematically, the objec-

tive function can be rewritten as

fLd;Lvg ¼ arg min DKL pðD;V; D̂; V̂ÞkqðD;V; D̂; V̂Þ
� �

þ
XM
dm1

X
dm2
2Mdm1

V ðdm1
; dm2

2 Mdm1
Þ

þ
XM
dm1

X
dm2
2Cdm1

V ðdm1
; dm2

2 Cdm1
Þ

þ
XV
vi1

X
vi22Mvi1

V ðvi1 ; vi2 2 Mvi1
Þ

þ
XV
vi1

X
vi22Cvi1

V ðvi1 ; vi2 2 Cvi1 Þ;

ð8Þ
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where Mvi1
and Cvi1 are the must-link and cannot-link sets

for latent label lvi1 of word vi1 .

3.2 Alternating EM

Since globally optimizing the latent labels as well as the

approximating function qðdm; viÞ is intractable, we substitute

(2) into the objective function (8) to alternate the optimiza-

tion process. To achieve this, we first fixLv and minimize the

objective in (8) w.r.t Ld. Then we fix Ld and minimize the

objective in (8) w.r.t Lv. The process continues until

convergence is achieved.
When we fixLv, the objective function forLd is rewritten as

Ld ¼ arg min
XKd

kd

X
dm:ldm¼kd

pðdmÞDKLðpðVjdmÞkpðVjd̂kdÞÞ

þ
XM
dm1

X
dm2
2Mdm1

V ðdm1
; dm2

2 Mdm1
Þ

þ
XM
dm1

X
dm2
2Cdm1

V ðdm1
; dm2

2 Cdm1
Þ;

ð9Þ

However, optimizing this objective function is still compu-
tationally intractable. It becomes clear that we need a more
feasible approximation. Here, we use a general EM
algorithm to find an estimation [22]. There are two steps
in the EM algorithm: the E-step and the M-step.

In the E-Step, we update the cluster labels based on the
fixed model function qðdm; viÞ from the last iteration. More
exactly, we use the iterated conditional mode (ICM)
algorithm [22] to find the cluster labels. ICM greedily
solves the objective function by updating one latent variable
at a time, and keeping all the other latent variables fixed. In
our implementation, we find the label ldm by

ldm ¼ arg min
ldm¼kd

DKLðpðVjdmÞkpðVjd̂kdÞÞ

þ
X

dm0 2Mdm
Ildm 6¼ldm0

am;m0DKLðpðVjdmÞkpðVjdm0 ÞÞ

þ
X

dm0 2Cdm ;

Ildm¼ldm0

�am;m0 Dmax �DKLðpðVjdmÞkpðVjdm0 ÞÞð Þ:

ð10Þ

In the M-Step, we update the model function qðdm; viÞ by

fixing Ld and Lv. Since the latent labels are fixed, the update

of q is not affected by the must-links and cannot-links. Thus,

we can modify them as

q
�
d̂kd ; v̂kv

�
¼
X
ldm¼kd

X
lvi¼kv

pðdm; viÞ; ð11Þ

qðdmjd̂kdÞ ¼
qðdmÞ

qðldm ¼ kdÞ
½qðdmjd̂kdÞ ¼ 0 if ldm 6¼ kd�; ð12Þ

qðvijv̂kvÞ ¼
qðviÞ

qðlvi ¼ kvÞ
½qðvijv̂kvÞ ¼ 0 if lvi 6¼ kv�; ð13Þ

where qðdmÞ ¼
P

vi
pðdm; viÞ, qðviÞ ¼

P
dm
pðdm; viÞ, qðd̂kdÞ ¼P

kv
pðd̂kd ; v̂kvÞ and qðv̂kvÞ ¼

P
kd
pðd̂kd ; v̂kvÞ. More detailed

derivations of M-step can be found in [4]. Algorithm 1

summarizes the main steps in the procedure. The conver-
gence property is described in the Lemma.

Lemma. The objective function (8) in the HMRF2-ITCC model
monotonically decreases to a local optimum.

This lemma is easy to prove since the ICM algorithm
decreases the nonnegative objective function (8) to a local
optimum given a fixed q function. Then the update of q is
monotonically decreasing as guaranteed by the theorem
proven in [4].

3.3 Implementation Details

In this section, we discuss some issues in developing the
constrained coclustering algorithm, which affects not only
its performance (e.g., scalability) but also the final cluster-
ing results. In the following, we call our constrained ITCC
approach CITCC, while using HMRF2-ITCC for the
internal model.

3.3.1 Initialization

Initialization is one of the most important issues in clustering
since it directly affects the clustering quality. In this work, we
utilize Kmeans to initialize the document and word clusters.
Before we apply this method, however, we need to initialize
Kmeans first. To make the Kmeans algorithm more stable for
document and word clustering, we employ a farthest-first
traversal method [29]. It aims to find K data points that are
maximally separated from each other. In our implementa-
tion, at the beginning of initialization, we randomly select a
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data point as the first cluster center. Then, to identify a new
center, we choose a data point that has not been selected
previously using the following procedure. We first compare
the distances between a candidate data point and all the
previously selected centers, and record the minimal distance
between this point and the centers. Then the candidate point
with the largest minimum distance is selected as the new
center. Finally, K centers are selected to initialize the cluster
centers of Kmeans.

3.3.2 Data Structure for Matrix Operations

In our implementation, the original document and word co-
occurrences, as well as the intermediate parameters such as
qðtþ1Þðd̂kd ; v̂kvÞ, qðtþ1Þðdmjd̂kdÞ, and qðtþ1Þðvijv̂kvÞ are all stored
in matrices. The matrices adopt a row-style. Specifically, for
a dense matrix, we use an array to store the row elements;
for a sparse matrix, after comparing different hash table
implementations in Java, we choose the COLT1 hash to
store the row elements. When implementing Kmeans, we
store the norm of each row beforehand since the computa-
tion of the norm of each point is one of the biggest
overheads in computing the euclidean distance or cosine
similarity. When implementing NMF-based clustering
methods, we carefully encode matrix multiplication since
it affects the system performance the most. When imple-
menting the ITCC-based methods, the computational
sequence of KL-divergence is designed to make the
computation faster. For example, when we compute the
distances of

DKLðpðVjdmÞkpðVjd̂kdÞÞ ¼
X
i

pðvijdmÞ log
pðvijdmÞ
pðvijd̂kdÞ

; ð14Þ

in the for-loops, we follow the sequence of d̂kd , dm and then
vi since the matrix is stored in a row-style and the
computation is much faster when we traverse the matrix
row by row.

3.3.3 Constraints and ICM Inference

The constraints are stored in a set of hash tables. We choose
this data structure to make the constraints symmetric for
pairs of data points. It also makes it easier to extend
the appointed constraints with neighborhood inference [22].
In this paper, however, we only use the original constraint
set and do not infer new constraints, since the NE-based
constraints and the WordNet-based constraints are noisy,
which may not satisfy the consistency assumption [22].
Moreover, for the CITCC approach, in the ICM iteration, we
cache all the KL-divergences DKLðpðVjdmÞkpðVjd̂kdÞÞ and
DKLðpðDjviÞkpðDjv̂kvÞÞ, to avoid repeatedly computing them
during the ICM algorithm.

The following remark points out the overall computa-
tional complexity of the CITCC algorithm under our
implementation.

Remark 2. The time complexity of the alternating EM
algorithm for the HMRF2-ITCC model is Oððnnz þ ðnc �
iterICMÞÞ � ðKd þKvÞÞ � iterAEM , where nnz is the total
number of nonzero elements in the document-word
co-occurrence matrix, nc is the constraint number,
iterICM is the ICM iteration number in the E-Step, Kd

and Kv are the cluster numbers, and iterAEM is the
iteration number of the alternating EM algorithm.

It has been shown that ICM, a greedy approximate
inference method, is faster (by at least an order of
magnitude) than other global approximate inference meth-
ods, e.g., loopy belief propagation and LP relaxation [30].
Moreover, when the number of constraints increases, ICM
performs no worse than the global inference methods [30].
In this work, since the number of NE-based document
constraints and the number of WordNet-based word
constraints are quite large, we adopt the ICM algorithm to
handle the large number of constraints.

4 UNSUPERVISED CONSTRAINTS

In this section, we show how to generate additional
semantic constraints for clustering. Specifically, we intro-
duce named-entity-based document constraints and Word-
Net relatedness-based word constraints using the following
approaches.

4.1 Document Constraints

In practice, document constraints constructed based on
human annotations are difficult to obtain. To cope with this
problem, in this work, we propose new methods to derive
“good but imperfect” constraints using information auto-
matically extracted from either the content of a document
(e.g., NE constraints) or existing knowledge sources
(e.g., Wordnet constraints). For example, if two documents
share the same people names such as “Barack Obama,”
“Sarah Palin,” and “John McCain,” then both documents are
probably about US politics, thus both are likely to be in
the same document cluster. Similarly, if two documents
share the same organization names such as “AIG,” “Lehman
Brothers,” and “Merrill Lynch,” then both of them may be
belong to the same document cluster about the financial
markets. Consequently, the document must-link constraints
can be constructed from the correlated named entities such
as person, location, and organization. Specifically, if there are
overlapping NEs in two documents and the number of
overlapping NEs is larger than a predefined threshold, we
may add a must-link to these documents.

4.2 Word Constraints

Besides named-entity-based document constraints, it is
possible to incorporate additional lexical constraints de-
rived from existing knowledge sources to further improve
clustering results. In our experiment, we leverage the
information in WordNet, an online lexical database [31],
to construct word constraints. Specifically, the semantic
distance of two words can be computed based on their
relationships in WordNet. Since we can construct word
must-links based on semantic distances, for example, we
can add a word must-link if the distance between two
words is less than a threshold, additional lexical informa-
tion can be seamlessly incorporated into the clustering
algorithm to derive better word clusters. Moreover, since
word knowledge can be transferred to the document side
during coclustering, with additional word constraints, it is
possible to further improve document clustering as well.

5 EXPERIMENTS

To evaluate the effectiveness of the proposed CITCC
approach, we ran our experiments using the 20-newsgroups

SONG ET AL.: CONSTRAINED TEXT COCLUSTERING WITH SUPERVISED AND UNSUPERVISED CONSTRAINTS 1231

1. http://acs.lbl.gov/software/colt/.



data set2 and the SRAA data set.3 The 20-newsgroups data
set is a collection of approximately 20,000 newsgroups
documents, partitioned evenly across 20 different news-
groups. The SRAA data set is a collection of 73,218 UseNet
articles from four discussion groups: simulated autoracing,
simulated aviation, real autos, and real aviation. These data
sets are often used as benchmarks for classification as well
as semi-supervised learning.

To evaluate the performance of CITCC against various
clustering algorithms, we employed a widely used normal-
ized mutual information (NMI)-based measure [32]. The
NMI between two random variables X and Y is defined as

NMIðX;Y Þ ¼ IðX;Y Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðXÞHðY Þ

p ;

where IðX;Y Þ is the mutual information between X and Y .
The entropies HðXÞ and HðY Þ are used for normalizing the
mutual information to be in the range of ½0; 1�. In practice, we
estimate theNMI score [33] using the following formulation:

NMI ¼
PK

s¼1

PK
t¼1 ns;t log

nns;t
ns�nt

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

s ns log ns
n

� � P
t nt log nt

n

� �q ; ð15Þ

where n is the number of data samples, ns and nt denote the
amount of the data in class s and cluster t, ns;t denotes the
amount of data in both class s and cluster t. The NMI score
is 1 if the clustering results match the category labeling
perfectly and 0 if the clusters were obtained from a random
partition. In general, the larger the scores are, the better the
clustering results are.

5.1 20-Newsgroups Data Set

In this section, first we present some results on semi-
supervised document clustering in which human annotated
categories were used to derive document and word
constraints. We want to demonstrate the performance of
the algorithm in ideal situations in which constraints were
constructed from human-provided clean data. Then we
present a few experiments to examine the performance of
the algorithm in unsupervised document clustering in

which the automatically derived noisy word and document
constraints were used.

5.1.1 Semi-Supervised Document Clustering

We first tested CITCC in a two-class document clustering
setting where documents from two newsgroups (alt.athe-
ism and comp.graphics) were used. There were 1,985 docu-
ments after removing the documents with less than five
words. The vocabulary size was 11,149 after removing the
words that appear in less than two documents. Each
document was represented as a term frequency (TF) vector.
In this experiment, we compared the performance of
CITCC with that of several representative clustering
algorithms such as Kmeans, constrained Kmeans
(CKmeans) [22], Semi-NMF (SNMF) [34], constrained
SNMF (CSNMF) [9], Tri-factorization of Semi-NMF
(STriNMF) [9], constrained STriNMF (CSTriNMF) [9], and
ITCC [4]. Among all the methods we tested, CKmeans,
CSNMF, CSTriNMF, and CITCC are constrained clustering
algorithms; STriNMF, CSTriNMF, ITCC, and CITCC are
coclustering methods; and CSTriNMF and CITCC are
constrained coclustering methods. For document con-
straints, we added a must-link between two documents if
they shared the same category label. We also added a
cannot-link if two documents come from different news-
groups. For the word constraints, after stop word removal,
we counted the term frequencies of words in each news-
group, and then chose the top 1,000 words in each group to
randomly generate word pairs to add the word must-links.
We did not use any word cannot-links in our experiments.
In the following experiments, the document cluster number
was set to 2, the ground-truth number.

We first tested how different model parameters affect the
document clustering results. The tradeoff parameters am1;m2

and �am1;m2
for constraints in (5) and (6) were set to numbers

between 1E � 8 and 100. We also present the results with a
fixed parameter value for each algorithm. For CITCC, the
tradeoff parameters for documents am1;m2

and �am1;m2
were

empirically set to 1=
ffiffiffiffiffi
M
p

, where M is the document number.
Similarly, the tradeoff parameters for word constraints were
set to be 1=

ffiffiffiffi
V
p

, where V is the word number. In addition,
the tradeoff parameters in Kmeans was set to 1=

ffiffiffiffiffi
M
p

. The
tradeoff parameters in SNMF and STriNMF were set to 0.5.
Fig. 2 compares the clustering performance with different
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2. http://people.csail.mit.edu/~jrennie/20Newsgroups/.
3. http://www.cs.umass.edu/~mccallum/code-data.html.

Fig. 2. Test with different parameters (alt.atheism and comp.graphics).



parameters for CITCC as well as other constrained
methods. Since the clustering results with fixed parameters
were comparable to the best results with varied parameters,
in the following experiments, we used fixed parameters.

We also evaluated the effect of different word cluster
numbers on document clustering performance. Fig. 3 shows
the results of two coclustering algorithms CSTriNMF and
CITCC with different word cluster numbers. It is shown
that for this data set, more word clusters may not result in
improved document clustering results when a sufficient
number of word clusters is reached. For example, after
reaching 8 for ITCC and 32 for CITCC, the NMI scores of
ITCC and CITCC actually decreased when the number of
word clusters further increased. In the rest of the experi-
ments, we fixed the word cluster number to be twice the
document cluster number.

We then varied the number of document and word
constraints in each experiment by randomly selecting a
fixed number of constraints from all possible must-links
and cannot-links to investigate their impact on clustering
performance. Figs. 4 shows the experiment results. Each x-
axis represents the number of document constraints used
in each experiment and y-axis the average NMI of
five random trials. As shown in Fig. 4a, among all the
methods we tested, CITCC consistently performed the
best. It outperformed the nonconstrained coclustering
algorithm ITCC significantly. Its clustering performance
was also better than all the 1D clustering algorithms,
regardless of the number of document constraints used.
Moreover, it was more effective than a known constrained
coclustering algorithm CSTriNMF. The number of docu-
ment constraints seems to have a significant impact on the
performance. The more document constraints we added,
the better the clustering results were.

In addition, to evaluate the effect of the number of
word constraints on the constrained coclustering perfor-
mance, we evaluated three versions of the CITCC and
CSTriNMF algorithms 1) CITCC and CSTriNMF: with only
document constraints and no word constraints, 2) CITCC
(5K) and CSTriNMF (5K): with document constraints plus
5,000 word constraints, and 3) CITCC (10K) and
CSTriNMF (10K): with document constraints plus 10,000
word constraints. As shown in Fig. 4b, in general, more
word constraints resulted in better clustering performance.
The impact of the word constraints, however, was not as
strong as that of the document constraints.

5.1.2 Unsupervised Document Constraints

In this experiment, the unsupervised document must-link
constraints were automatically derived from NEs such as
person, location, and organization. We used a state-of-the-art
NE recognizer4 to find NEs in these documents. If there
were some overlapping NEs in two documents and the
number of overlapping NEs was larger than a threshold,
then we added a must-link between these documents.

Before we present the evaluation results, we first
examine the quality of the NE constraints. Table 1 shows
the related statistics. Here,“#NEs (mean(std))” represents
the average number and standard deviation of over-
lapping NEs in two documents that had a must-link;
“#Must-links” is the total number of the added must-links
based on overlapping NEs; and “Correct Percentage”
indicates the percentage of all the correct must-links that
were added, the percentage of correct ones (the associated
documents belong to the same newsgroup). “Similarity
(mean(std))” indicates the average cosine similarity and the
standard deviation among the documents with must-links.
As shown in Table 1, increasing the number of over-
lapping NEs required to add a must-link decreased the
number of total must-links added, increased the accuracy
of the derived must-links, as well as increased the
document similarities with must-links. Moreover, after
the minimum number of required overlapping NEs
reached 2, the quality of the derived must-links was quite
high (95.6 percent). After that, the accuracy improvement
became less significant, while the total number of must-
links added continued to decrease significantly.

To demonstrate how different methods utilized the
additional NE constraints, we first tested them under the
two-class setting (alt.atheism versus comp.graphics).
Specifically, we compared the performance of the con-
strained version of each algorithm with that of the
nonconstrained version. The comparison results shown in
Table 2 are the means and the standard deviations of the
NMI scores across 30 random runs. The column no
constraint represents the performance of the nonconstrained
version of each method (i.e., Kmeans, SNMF, STriNMF, and
ITCC). As shown in Table 2, among all the methods we
tested, CITCC achieved the best performance (0.843). Under
the non-parametric Mann-Whitney U test,5 CITCC per-
formed significantly better than ITCC. Moreover, for each
method, the constrained version was able to take advantage
of the additional NE constraints to improve its clustering
performance over its nonconstrained version. In addition, if
a must-link was added when at least one overlapping NE
was detected, the performance of the constrained version
was worse than that of the nonconstrained version. This
seems to suggest that if we define the must-link constraints
loosely (e.g., only at least 1 overlapping NE is required to
add a must-link), the additional NE constraints were too
noisy for a constrained clustering system to achieve good
performance. Furthermore, the automatically derived NE
constraints were not as effective as the constraints con-
structed from category labels provided by human. To
investigate the reason for this, we computed the average
similarity of documents with must-links. As shown in
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Fig. 3. Effect of word cluster numbers (alt.atheism and comp.graphics).

4. http://nlp.stanford.edu/software/CRF-NER.shtml.
5. http://en.wikipedia.org/wiki/Mann-Whitney_U.



Table 1, the average document similarity increased as more

overlapping NEs were required. This implies that the

information encoded in the NE constraints may be mostly

redundant to that encoded in the document similarity

metric. In contrast, human-provided category labels may be

less redundant and thus provide additional information

(e.g., topic information) to guide the clustering towards the

ground truth.
We also tested the algorithms under all 190 two-class

clustering conditions for all 20 newsgroups. The number of
overlapping NEs was set to be at least 3. The resulting

number of must-link constraints and the correct percen-
tage values are presented in Fig. 5. This data shows that,

overall, the derived NE constraints were quite accurate. In
most cases, over 95 percent of the derived NE constraints
were correct. In addition, as shown in Figs. 6a and 6d, for
all 190 cases, the NE constraints can help improve the
clustering performance for both CKmeans and CITCC
rather consistently. Moreover, for CITCC, the dots are
concentrated at the upper right corner, thus indicating
consistently high performance for both ITCC and CITCC.
For the results in Figs. 6b and 6c, however, the usefulness
of NE constraints for CSNMF and CSTriNMF are less
consistent. Many times the additional constraints actually
hurt the performance. We speculate that this may be due
to two factors. First, as shown in Table 2, the clustering
results were quite sensitive to the number of overlapping
NEs used in constructing the must-links, especially for
CSNMF and CSTriNMF. Since we set the least number of
overlapping NEs required to add a must-link to be the
same for all the systems and across all the 190 test
conditions, the results for CSNMF and CSTriNMF may not
always be optimal. Second, we used the same tradeoff
parameters in all experiments, which may not be optimal
for CSNMF and CSTriNMF.

5.1.3 Unsupervised Word Constraints

In this experiment, the unsupervised word must-link
constraints were derived based on WordNet6 [31], an
online lexical resource widely used in the natural
language processing (NLP) and text mining community.
WordNet groups English words, primarily nouns and
verbs, into sets of synonyms called synsets; it provides
short, general definitions, and records the various seman-
tic relations between these synonym sets, such as
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Fig. 5. # Constraints versus correct percentage (all 190 two-class

problems in 20-newsgroups data). 6. http://wordnet.princeton.edu.

Fig. 4. Semi-supervised document clustering (alt.atheism and comp.graphics).

TABLE 1
Statistics of NEs Constraints under a Two-Class Setting (alt.atheism versus comp.graphics)

The average similarity and standard deviation of all documents in the two newsgroups is 0.033(2.212).



hypernyms, hyponyms, and meronyms. Both nouns and
verbs are organized into hierarchies, defined by hyper-
nym relations. The semantic relatedness between words
can be measured based on the word hierarchies in the
Wordnet. For example, the shortest path between two
words can be used to measure the semantic distance
between them. As a result, we can utilize the semantic
relatedness between words to derive word must-link
constraints. For simplification, in this experiment, we only
considered nouns.

In the experiments, to obtain the word must-links, we

selected semantically related words based on their Word-

Net distance. The semantic distance between two words is

computed as follows:7

. Locate the common parent cp of words w1 and w2. If
one exists, check each sense of each lemma; if one is
not found, return 1.0.

SONG ET AL.: CONSTRAINED TEXT COCLUSTERING WITH SUPERVISED AND UNSUPERVISED CONSTRAINTS 1235

TABLE 2
Comparison of NE Constraints for Different Algorithms under a Two-Class Setting (alt.atheism versus comp.graphics)

“þ=� ” represent the statistical significance of the difference between the constrained version and unconstrained version of a method based on
Mann-Whitney U test. “þ” means the constrained version is significant better than unconstrained version with p < 0:05 and “-” means the
unconstrained version is significant better than constrained version with p < 0:05.

Fig. 6. NE constraints results on 190 two-class clustering problems in the 20-newsgroups data set.

7. http://www.rednoise.org/rita/wordnet.



. Calculate the length of the shortest path from either
word to cp: spðw1; w2Þ.

. Calculate the length of the path from cp to the root of
ontology lenðcp; rootÞ.

. Calculate the distance between the two words and
return

Distðw1; w2Þ ¼
spðw1; w2Þ

spðw1; w2Þ þ lenðcp; rootÞ
: ð16Þ

If the semantic distance between two words was less than
a predefined threshold, we added a must-link between them.
We evaluated the effectiveness of WordNet-based must-
links using the data from two newsgroups (alt.atheism and
comp.graphics). There were 4,680 nouns among all the 11,149
vocabulary words. As shown in Fig. 7. the number of
constraints increased exponentially when the threshold
value was increased. We further tested the clustering results
of CSTriNMF and CITCC by varying the distance thresholds
from 0.05 to 0.5. The NMI values as well as the numbers of
word constraints are presented in Table 3 with different
distance thresholds. We can see that small distance values
seem to improve the document clustering results since they
will result in more reliable word must-links. In contrast, large
threshold values often introduce noise which makes the
clustering performance worse. CSTriNMF performed sig-
nificantly better than STriNMF. Although CITCC in average

performed better than ITCC, their difference, however, was

not statistically significant. This may be because the semantic

relatedness information in WordNet is very noisy. For

example, the word “bank” can be a financial institute or a

“river bank.” In terms of semantic relatedness, the distance

between “bank” as a financial institute and “money” is small

while the distance between “bank” as in “river bank” and

“money” is big. Without word-sense disambiguation, it is

difficult to accurately compute semantic relatedness.

5.2 SRAA Data Set

In the SRAA data set, there are originally four classes,

including simulated autoracing, simulated aviation, real

autos, and real aviation. The data set contains 73,218 articles

in total, and we sampled 5 percent of the data to derive a test

collection whose size is comparable to the 20-newsgroups

data set. After performing stop word and short document

removal, we obtained 3,603 documents for clustering. The

vocabulary size was 10,460. The document cluster number

was set to 4, the ground truth number, and the word cluster

number was empirically set to 8. All parameters were the

same as those used in the 20-newsgroups experiments.

Here, we focus on verifying the effect of the NE-based

document constraints and WordNet-based word constraints

for unsupervised document clustering.

5.2.1 Unsupervised Document Constraints

We tested the SRAA data set using the same parameters as

those used in Section 5.1.2. Table 4 shows the statistics of the

corresponding NE constraints. Similar to the results on the

20-newsgroups data, when we increased the number of

overlapping NEs, the number of must-links decreased,

while the precision of the derived must-links increased. It

seems that the number of overlapping NEs in the SRAA

data set was much less than that in the 20-newsgroups data.

For example, when we set the threshold to 11, there was

only 1 must-link added to the documents. This may be due

to the nature of the data set. In general, news groups have

more information on people, locations and organizations.

The clustering results of the SRAA data set is in Table 5. As

shown in the results, CITCC outperformed the all the other

methods. It is also shown that the constraints were noisy

when the overlapping NE threshold was set to 1.
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Fig. 7. Word constraints with different WordNet distances.

TABLE 3
Comparison of Different Algorithms with Different WordNet Distance Thresholds

for the Two-Newsgroups (alt.atheism versus comp.graphics) Data Set

“þ=� ” represent the statistical significance of the difference between the constrained version and unconstrained version of a method based on
Mann-Whitney U test. “+” means the constrained version is significant better than unconstrained version with p < 0:05 and “�” means the
unconstrained version is significant better than constrained version with p < 0:05.



5.2.2 Unsupervised Word Constraints

To test the effects of unsupervised word constraints using
the SRAA data set, we focused on 4,327 nouns among the
10,460 vocabulary words. The clustering results with
different threshold values are shown in Table 6. We can
see that the number of constraints also increased signifi-
cantly when we increased the threshold of WordNet
distance. The clustering results were better when the
threshold was smaller, e.g., smaller than 0.1. Similar to
the results obtained from the 20-newsgroups data, when
the threshold was increased, the derived constraints also
became more noisy, which hurt the performance of
constrained clustering.

6 CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated how to construct
various document and word constraints and apply them to
the constrained coclustering process. We proposed a novel
constrained coclustering approach that automatically in-
corporates various word and document constraints into
information-theoretic coclustering. Our evaluations on two
benchmark data sets demonstrated the effectiveness of the
proposed method for clustering textual documents.
Furthermore, our algorithm consistently outperformed all
the tested constrained clustering and coclustering methods
under different conditions.

There are several directions for future research. Our
investigation of unsupervised constraints is still preliminary.

We will further investigate whether better text features that

can be automatically derived by using natural language

processing or information extraction tools. We are also

interested in applying CITCC to other text analysis applica-

tions such as visual text summarization.
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