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Abstract

In this paper, we present a constrained co-clustering approach
for clustering textual documents. Our approach combines
the benefits of information-theoretic co-clustering and con-
strained clustering. We use a two-sided hidden Markov ran-
dom field (HMRF) to model both the document and word
constraints. We also develop an alternating expectation max-
imization (EM) algorithm to optimize the constrained co-
clustering model. We have conducted two sets of experi-
ments on a benchmark data set: (1) using human-provided
category labels to derive document and word constraints for
semi-supervised document clustering, and (2) using automat-
ically extracted named entities to derive document constraints
for unsupervised document clustering. Compared to sev-
eral representative constrained clustering and co-clustering
approaches, our approach is shown to be more effective for
high-dimensional, sparse text data.

Introduction
Clustering is a popular machine learning method com-
monly used in exploratory text analysis. Numerous clus-
tering methods have been proposed previously and many
of them focus on one-dimensional clustering (Jain, Murty,
and Flynn 1999). In practice, it is often desirable to co-
cluster documents and words simultaneously by exploiting
the co-occurrence among them. It has been shown that co-
clustering is more effective than clustering along a single
dimension in many applications (Cheng and Church 2000;
Dhillon 2001; Dhillon, Mallela, and Modha 2003; Cho et al.
2004).

Typical clustering algorithms are unsupervised. It is
also preferable for a clustering or co-clustering algorithm
to be able to take prior information about clusters, such as
human-specified category labels, into consideration. Con-
strained clustering was proposed as a solution to the prob-
lem. It leverages additional constraints derived from human-
annotated instances such as pre-defined semantic categories
of documents. However, most of the existing works on con-
strained clustering have focused on one-dimensional cluster-
ing (Basu, Davidson, and Wagstaff 2008).

To combine the benefits of both co-clustering and
constrained clustering, in this paper, we propose an
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approach called constrained information-theoretic co-
clustering (CITCC). It incorporates constraints into the
information theoretic co-clustering (ITCC) framework
(Dhillon, Mallela, and Modha 2003) using a two-sided hid-
den Markov random field (HMRF) regularization. We also
develop an alternating expectation maximization (EM) algo-
rithm to optimize the model. Consequently, CITCC can si-
multaneously cluster two sets of discrete random variables
such as words and documents under the constraints from
both variables.

Following a review of existing works, we describe the
details of the proposed CITCC approach. In addition, to
evaluate the effectiveness of the proposed method, we use
a benchmark data set to test its performance in two dif-
ferent experimental settings: (1) as a semi-supervised ap-
proach with human-provided category labels, (2) as an un-
supervised method that incorporates additional application-
specific constraints such as the named entity overlapping
constraints, for document clustering.

Related Work
Existing works that are most relevant to ours fall into three
categories: semi-supervised clustering, co-clustering, and
constrained co-clustering. In this section, we briefly sum-
marize the works in each category.

There are two types of semi-supervised clustering meth-
ods: semi-supervised clustering with labeled seeding
points (Basu, Banerjee, and Mooney 2002; Nigam et al.
2000) and semi-supervised clustering with labeled con-
straints (Wagstaff et al. 2001; Xing et al. 2002; Bilenko,
Basu, and Mooney 2004; Basu, Bilenko, and Mooney 2004;
Lu and Leen 2007). Constraint-based clustering meth-
ods often use pairwise constraints such as “must-links”
and “cannot-links” to enhance unsupervised clustering algo-
rithms. These constraints are also called “side-information”.
Similar to constraint-based clustering methods, we also use
pairwise must-links and cannot-links to encode prior knowl-
edge. While all the above semi-supervised methods are ap-
plicable to one-dimensional clustering, we focus on extend-
ing these techniques to co-clustering.

Most co-clustering algorithms deal with dyadic data, e.g.,
the document and word co-occurrence frequencies. The
dyadic data can be modeled as a bipartite graph and spectral
graph theory is used to solve the partition problem (Dhillon



2001). The co-occurrence frequencies can also be encoded
in co-occurrence matrices and then matrix factorizations are
used to solve the clustering problem (Cho et al. 2004;
Ding et al. 2006). The document and word co-occurrence
can also be formulated as a two-sided generative model
using a Bayesian interpretation (Shan and Banerjee 2008;
Wang, Domeniconi, and Laskey 2009). Moreover, Dhillon
et al. (Dhillon, Mallela, and Modha 2003) modeled the co-
clustering algorithm as an information-theoretic partition of
the empirical joint probability distribution of two sets of dis-
crete random variables. Later, Banerjee et. al. (Banerjee et
al. 2007) extended this method to a general Bregman co-
clustering and matrix factorization framework.

Recently, there are some initial efforts on extending the
existing co-clustering methods to constrained co-clustering
(Pensa and Boulicaut 2008; Wang, Li, and Zhang 2008;
Chen, Wang, and Dong 2009). Most of these methods are
based on matrix factorizations that optimize a sum squared
residues-based objective function. Since it has been reported
that, among the existing co-clustering methods, the ITCC
algorithm that uses I-divergence is empirically more effec-
tive in analyzing sparse and high-dimensional text data than
those methods that use Euclidean distance (Banerjee et al.
2007), we focused our work on extending the ITCC frame-
work to incorporate constraints.

The CITCC Algorithm
In this section, we first describe how we formulate the con-
strained co-clustering problem as a two-sided HMRF regu-
larized ITCC (HMRF2-ITCC) model. Then we present how
to use an alternating EM algorithm to optimize the model.

Problem Formulation
Denote the document set and word set as D =
{d1, d2, . . . , dM} and V = {v1, v2, . . . , vV }. Then the joint
probability of p(dm, vi) can be computed based on the co-
occurrence count of dm and vi. For hard clustering prob-
lems, shown by Dhillon, Mallela, and Modha (2003), a func-
tion

q(dm, vi) = p(d̂kd , v̂kv )p(dm|d̂kd)p(vi|v̂kv ), (1)
where d̂kd and v̂kv are cluster indicators, kd and kv are the
cluster indices, is used to approximate p(dm, vi) by mini-
mizing the Kullback-Leibler (KL) divergence:

DKL(p(D,V)||q(D,V))

= DKL(p(D,V, D̂, V̂)||q(D,V, D̂, V̂))

=
∑Kd

kd

∑
dm:ldm=kd

p(dm)DKL(p(V|dm)||p(V|d̂kd))

=
∑Kv

kv

∑
vi:lvi=kv

p(vi)DKL(p(D|vi)||p(D|v̂kv ))

(2)
where D̂ and V̂ are the cluster sets, p(V|d̂kd) de-
notes a multinomial distribution based on the prob-
abilities (p(v1|d̂kd), . . . , p(vV |d̂kd))T , p(vi|d̂kd)) =

p(vi|v̂kv )p(v̂kv |d̂kd) and p(vi|v̂kv ) = p(vi)/p(lvi = v̂kv )
due to hard clustering labels. Symmetrically we
can define the probability for words: p(D|v̂kv ) de-
notes a multinomial distribution based on the prob-
abilities (p(d1|v̂kv ), . . . , p(dV |v̂kv ))T , p(di|v̂kv )) =

p(di|d̂kd)p(d̂kd |v̂kv ) and p(di|d̂kd) = p(di)/p(ldi = d̂kd).

Ld D V Lv

Figure 1: Illustration of the HMRF2-ITCC model.

As shown in Fig. 1, we introduce two latent label
sets Ld = {ld1 , ld2 , . . . , ldM } for documents and Lv =
{lv1 , lv2 , . . . , lvV } for words. Then the original ITCC can
be formulated as the log-likelihood of a conditional proba-
bility in the exponential family:

p(D,V|Ld,Lv) (3)

= exp
(
−DKL(p(D,V, D̂, V̂)||q(D,V, D̂, V̂))

)
bφKL

(·)

where bφKL
(·) is a normalization constant determined by its

divergency type (Banerjee et al. 2007).
For constrained clustering problem, we use HMRF to for-

mulate the prior information for both document and word
latent labels. As illustrated in Fig. 1, the “must-links” and
“cannot-links” for both documents and words are encoded
in the HMRFs. In the following, we focus on deriving the
constraints for Ld. It is easy to generalize the derivation to
Lv .

First, for latent label ldm , the must-link set is denoted
as Mdm , and the cannot-link set as Cdm . The neighbor
set of ldm is denoted as Ndm = {Mdm , Cdm}. Then the
latent labels ldm (m = 1, . . . ,M ) construct a neighbor-
hood graph and the random field defined on this graph is
a Markov random field, following the Markov property:
p(ldm |Ld − {ldm}) = p(ldm |ldm ∈ Ndm). As a result,
the configuration of the latent label set can be expressed as
a Gibbs distribution. Following the generalized Potts en-
ergy function and its extension (Basu, Bilenko, and Mooney
2004), we have

p(Ld) = 1
Zd

exp(−
∑M
dm1

∑
dm2

∈Ndm1

V (dm1
, dm2

)).

(4)
For must-links, the energy function is

V (dm1
, dm2

∈Mdm1
) (5)

=am1,m2DKL(p(V|dm1)||p(V|dm2)) · Ildm1
6=ldm2

,

and for cannot-links, the energy function is

V (dm1
, dm2

∈ Cdm1
) (6)

=ām1,m2(Dmax −DKL(p(V|dm1)||p(V|dm2))) · Ildm1
=ldm2

.

where p(V|dm1
) denotes a multinomial distribution based

on the probabilities (p(v1|dm1
), . . . , p(vV |dm1

))T , Dmax is
the maximum value for all the DKL(p(V|dm1

)||p(V|dm2
)),

am1,m2 and ām1,m2 are tradeoff parameters to be set empir-
ically, and Itrue = 1 and Ifalse = 0.

Then, the constrained co-clustering problem can be for-
mulated as a MAP estimation for label configurations:

p(Ld,Lv|D,V) ∝ p(D,V|Ld,Lv)p(Ld)p(Lv). (7)



As we have two HMRF priors for Ld and Lv , we call this
two-sided HMRF regularization. Consequently, the objec-
tive function can be rewritten as:

{Ld,Lv} = arg minDKL

(
p(D,V, D̂, V̂)||q(D,V, D̂, V̂)

)
+
∑M
dm1

∑
dm2∈Mdm1

V (dm1 , dm2 ∈Mdm1
)

+
∑M
dm1

∑
dm2

∈Cdm1

V (dm1
, dm2

∈ Cdm1
)

+
∑V
vi1

∑
vi2∈Mvi1

V (vi1 , vi2 ∈Mvi1
)

+
∑V
vi1

∑
vi2∈Cvi1

V (vi1 , vi2 ∈ Cvi1 )

(8)
whereMvi1

and Cvi1 are the must-link and cannot-link sets
for latent label lvi1 of word vi1 .

Alternating EM
Globally optimizing the latent labels as well as the approx-
imating function q(dm, vi) is intractable. By substituting
Eq. (2) into objective function (8), we can alternate the op-
timization process. First, the algorithm fixes Lv and min-
imizes the objective in (8) w.r.t Ld. Then it fixes Ld and
minimizes the objective in (8) w.r.t Lv . The process contin-
ues until convergence is achieved.

When we fix Lv , the objective function for Ld is rewritten
as:

Ld =

arg min
∑Kd

kd

∑
dm:ldm=kd

p(dm)DKL(p(V|dm)||p(V|d̂kd))

+
∑M
dm1

∑
dm2∈Mdm1

V (dm1
, dm2

∈Mdm1
)

+
∑M
dm1

∑
dm2

∈Cdm1

V (dm1
, dm2

∈ Cdm1
)

(9)
Optimizing this objective function is still computationally
intractable. Here, we use a general EM algorithm to find an
estimation (Basu, Bilenko, and Mooney 2004). There are
two steps in the EM algorithm: the E-step and the M-step.

In the E-Step, we update the cluster labels based on the
fixed model function q(dm, vi) from the last iteration. More
exactly, we use the iterated conditional mode (ICM) algo-
rithm (Basu, Bilenko, and Mooney 2004) to find the cluster
labels. ICM greedily solves the objective function by updat-
ing one latent variable at a time, and keeping all the other
latent variables fixed. Here, we find the label ldm by

ldm = arg min
ldm=kd

DKL(p(V|dm)||p(V|d̂kd))

+
∑

dm′ ∈ Mdm ;

Ildm 6=ld
m′

am,m′DKL(p(V|dm)||p(V|dm′))

+
∑

dm′ ∈ Cdm ;

Ildm=ld
m′

ām,m′ (Dmax −DKL(p(V|dm)||p(V|dm′)))

In the M-Step, we update the model function q(dm, vi) by
fixingLd andLv . Since the latent labels are fixed, the update
of q is not affected by the must-links and cannot-links. Thus
we can update them as

q(d̂kd , v̂kv ) =
∑

ldm=kd

∑
lvi=kv

p(dm, vi) (10)

Algorithm 1 Alternating EM for HMRF2-ITCC model.
Input: Document and word sets D and V; cluster numbers Kd

and Kv; pairwise constraintsM and C.
Initialize document and word cluster labels using Kmeans.
Initialize q(0)(d̂kd , v̂kv ), q

(0)(dm|d̂kd) and q(0)(vi|v̂kv ).
while t < maxIter and δ > maxδ do

Document E-Step: compute document clusters using ICM
algorithm to minimize

L(t+1)
d = argmin∑Kd
kd

∑
dm:ldm=kd

p(dm)DKL(p(V|dm)||p(V|d̂kd))

+
∑M

dm1

∑
dm2∈Mdm1

V (dm1 , dm2 ∈Mdm1
)

+
∑M

dm1

∑
dm2∈Cdm1

V (dm1 , dm2 ∈ Cdm1
)

.

Document M-Step: update parameters

q(t+1)(d̂kd , v̂kv ), q(t+1)(dm|d̂kd) and q(t+1)(vi|v̂kv ).

and compute q(t+1)(dm|v̂kv ).
Word E-Step: compute document clusters using ICM algo-
rithm to minimize

L(t+2)
v = argmin∑Kv
kv

∑
vi:lvi=kv

p(vi)DKL(p(D|vi)||p(D|v̂kv ))

+
∑V

vi1

∑
vi2∈Mvi1

V (vi1 , vi2 ∈Mvi1
)

+
∑V

vi1

∑
vi2∈Cvi1

V (vi1 , vi2 ∈ Cvi1 )

.

Word M-Step: update parameters

q(t+2)(d̂kd , v̂kv ), q(t+2)(dm|d̂kd) and q(t+2)(vi|v̂kv ).

and compute q(t+2)(vi|d̂kd).
Compute cost cost(t+2) using Eq. (8) and compute δ =

(cost(t+2) − cost(t))/cost(t).
end while

q(dm|d̂kd) =
q(dm)

q(ldm = kd)
[q(dm|d̂kd) = 0 if ldm 6= kd]

(11)

q(vi|v̂kv ) =
q(vi)

q(lvi = kv)
[q(vi|v̂kv ) = 0 if lvi 6= kv] (12)

where q(dm) =
∑
vi
p(dm, vi), q(vi) =

∑
dm

p(dm, vi),
q(d̂kd) =

∑
kv

p(d̂kd , v̂kv ) and q(v̂kv ) =
∑
kd

p(d̂kd , v̂kv ).
More detailed derivations of M-step can be found in
(Dhillon, Mallela, and Modha 2003). Algorithm 1 summa-
rizes the main steps in the procedure. The convergence prop-
erty is described in the Lemma and the time complexity is
described in the Remark.

Lemma: The objective function (8) in HMRF2-ITCC
model monotonically decreases to a local optimum.

This lemma is easy to prove since the ICM algorithm de-
creases the non-negative objective function (8) to a local
optimum given a fixed q function. Then the update of q
is monotonically decreasing as guaranteed by the theorem
proven in (Dhillon, Mallela, and Modha 2003).

Remark: The time complexity of the alternating EM
algorithm for HMRF2-ITCC model is O((nnz + (nc ∗
iterICM ))·(Kd+Kv))·iterAEM , where nnz is the nonzero



number of document-word co-occurrences, nc is the con-
straint number, iterICM is the ICM iteration number in the
E-Step, Kd and Kv are the cluster numbers, and iterAEM
is the iteration number of the alternating EM algorithm.

Experiments
To evaluate the effectiveness of the proposed CITCC ap-
proach, we ran our experiments using the 20-newsgroups
data set.1 It is a collection of approximately 20,000 news-
group documents, partitioned evenly across 20 different
newsgroups. It is a benchmark data set with a ground truth
category label for each document. We conducted our experi-
ments in two different settings: (1) as a semi-supervised co-
clustering algorithm that can incorporate human-annotated
categories to improve document clustering performance, and
(2) as an unsupervised document clustering algorithm that
can incorporate constraints constructed from automatically
extracted named entities. To evaluate the performance of
CITCC against various clustering algorithms, we employed
a widely-used normalized mutual information (NMI)-based
measure (Strehl and Ghosh 2002). The NMI score is 1 if
the clustering results perfectly match the category labeling
and 0 if the clusters were obtained from random partition.
In general, the larger the scores are, the better the clustering
results are.

Semi-Supervised Document Clustering
We first tested CITCC in a two-class document clustering
setting where documents from two newsgroups (alt.atheism
and comp.graphics) were used. There were 1985 documents
after removing documents with less than five words. The
vocabulary size was 11149 after removing words that ap-
pear in less than two documents. Each document was repre-
sented as a TF (term frequency) vector. In this experiment,
we compared the performance of CITCC with that of several
representative clustering algorithms such as Kmeans, con-
strained Kmeans (CKmeans) (Basu, Bilenko, and Mooney
2004), Semi-NMF (SNMF) (Ding, Li, and Jordan 2010),
constrained SNMF (CSNMF) (Wang, Li, and Zhang 2008),
Tri-factorization of Semi-NMF (STriNMF) (Wang, Li, and
Zhang 2008), constrained STriNMF (CSTriNMF) (Wang,
Li, and Zhang 2008) and ITCC (Dhillon, Mallela, and
Modha 2003). Among all the methods, CKmeans, CSNMF,
CSTriNMF and CITCC were constrained clustering algo-
rithms; STriNMF, CSTriNMF, ITCC and CITCC were co-
clustering methods; and CSTriNMF and CITCC were con-
strained co-clustering methods. In the experiment, the doc-
ument cluster number was set to 2, the ground-truth number.
For all the co-clustering algorithms tested, the word cluster
number was empirically set to 4.

For document constraints, we added a must-link between
two documents if they shared the same category label. We
also added a cannot-link if two documents came from dif-
ferent newsgroups. For the word constraints, after stop word
removal, we counted the term frequencies of words in each
newsgroup, and then chose the top 1000 words in each group
to generate the word must-links. We did not use any word

1http://people.csail.mit.edu/ jrennie/20Newsgroups/

cannot-links in our experiments. We also varied the num-
ber of document and word constraints in each experiment
by randomly selecting a fixed number of constraints from all
the possible must-links and cannot-links to investigate their
impact on clustering performance. The tradeoff parameters
am1,m2

and ām1,m2
for document constraints in Eqs. (5) and

(6) were empirically set to 1/
√
M , where M is the docu-

ment number. Similarly, the tradeoff parameters for word
constraints were set to be 1/

√
V , where V is the word num-

ber. In addition, the tradeoff parameters in Kmeans was set
to 1/

√
M . The tradeoff parameters in SNMF and STriNMF

were set to 0.5.

Figure 2: Semi-supervised document clustering.

Figure 3: Effects of word constraints.

Figs. 2 and 3 show the experiment results. Each x-axis
represents the number of document constraints used in each
experiment and y-axis the average NMI of five random tri-
als. As shown in Fig. 2, among all the methods we tested,
CITCC consistently performed the best. It outperformed the
non-constrained co-clustering algorithm ITCC significantly.
It was also better than all the one-dimensional clustering al-
gorithms, regardless of the number of document constraints
used. Moreover, it was more effective than a known con-
strained co-clustering algorithm CSTriNMF. The number of
document constraints seems to have big impact on the per-
formance. The more document constraints we added, the
better the clustering results were. In addition, to evaluate
the effect of the number of word constraints on the con-
strained co-clustering performance, we tested three versions
of the CITCC and CSTriNMF algorithms (1) CITCC and
CSTriNMF: with only document constraints and no word
constraints, (2) CITCC (5K) and CSTriNMF (5K): with
document constraints plus 5,000 word constraints and (3)
CITCC (10K) and CSTriNMF (10K): with document con-
straints plus 10,000 word constraints. As shown in Fig. 3,



Table 1: Statistics of NEs constraints under a two-class setting (alt.atheism vs. comp.graphics). The average similarity and
standard deviation of all the documents in the two newsgroups is 0.033(2.212).

#NEs ≥1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥11
#NEs (mean(std)) 1.33(3.11) 2.99(7.35) 4.59(11.71) 5.96(15.86) 10.57(28.57) 14.81(37.41) 58.19(83.35)

#Must-links 35156 5938 2271 1219 363 206 32
Correct Percentage 89.5% 95.6% 97.4% 98.4% 96.4% 97.1% 100%

Similarity (mean(std)) 0.151(0.568) 0.266(0.323) 0.332(0.222) 0.366(0.168) 0.469(0.107) 0.496(0.084) 0.722(0.029)

Table 2: Comparison of different algorithms under a two-class setting (alt.atheism vs. comp.graphics).
#NEs ≥1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥11 no constraint

CKmeans 0.631(0.018) 0.666(0.018) 0.655(0.023) 0.636(0.022) 0.629(0.022) 0.629(0.022) 0.628(0.022) 0.623(0.031)
CSNMF 0.476(0.014) 0.646(0.003) 0.648(0.009) 0.659(0.004) 0.722(0.004) 0.696(0.005) 0.664(0.002) 0.669(0.009)

CSTriNMF 0.586(0.061) 0.674(0.004) 0.687(0.004) 0.685(0.004) 0.705(0.020) 0.759(0.027) 0.595(0.018) 0.712(0.006)
CITCC 0.582(0.021) 0.843(0.026) 0.844(0.027) 0.842(0.026) 0.842(0.026) 0.843(0.027) 0.844(0.028) 0.842(0.029)

more word constraints resulted in better clustering perfor-
mance. The impact of the word constraints, however, was
not as strong as that of the document constraints.

Unsupervised Document Clustering with
Additional Constraints
In practice, it is often difficult and costly to obtain sufficient
human-annotated training examples for semi-supervised
clustering. Consequently, we investigate whether constraints
automatically derived from text can improve clustering per-
formance. In this experiment, the constraints were con-
structed from named entities (NE) such as person, location
and organization, derived by an NE recognizer2. If there are
some overlapping NEs in two documents and the number of
overlapping NEs is larger than a threshold, then we add a
must-link to these documents.

Before we present the evaluation results, we first exam-
ine the quality of the NE constraints. Table 1 shows related
statistics. Here,“#NEs (mean(std))” represents the average
number and standard deviation of overlapping NEs in two
documents that had a must-link; “#Must-links” is the to-
tal number of must-links added based on overlapping NEs;
and “Correct Percentage” indicates that of all the must-
links added, the percentage of correct ones (The associ-
ated documents belong to the same newsgroup). “Similarity
(mean(std))” indicates the average cosine similarity and the
standard deviation among the documents with must-links.
As shown in Table 1, increasing the number of overlapping
NEs required to add a must-link decreased the number of to-
tal must-links added, increased the accuracy of the derived
must-links, as well as increased the document similarities
with must link. Moreover, after the minimum number of re-
quired overlapping NEs reached 2, the quality of the must-
links derived was quite high (95.6%). After that, the accu-
racy improvement became less significant, while the total
number of must-links added continued to decrease signifi-
cantly.

To demonstrate how different methods utilized the addi-
tional NE constraints, we first tested them under the two-
class setting (alt.atheism vs. comp.graphics). Specifically,

2http://nlp.stanford.edu/software/CRF-NER.shtml

we compared the performance of the constrained version
of each algorithm with that of the non-constrained version.
All the numbers shown in Table 2 are the means and the
standard deviations of the NMI scores across five random
runs. The column no constraint shows the performance of
the non-constrained version of each method (i.e., Kmeans,
SNMF, STriNMF and ITCC). As shown in Table 2, among
all the methods we tested, CITCC achieved the best perfor-
mance (0.844). Moreover, for each method, the constrained
version was able to take advantage of the additional NE con-
straints to improve its clustering performance over its non-
constrained version. In addition, if a must-link was added
when at least one overlapping NE was detected, the perfor-
mance of the constrained version was worse than that of the
non-constrained version. This seems to suggest that if we
define the must-link constraints loosely (e.g. only at least
1 overlapping NE is required to add a must-link), the addi-
tional NE constraints were too noisy for a constrained clus-
tering system to achieve good performance. Furthermore,
the automatically derived NE constraints were not as effec-
tive as the constraints based on human-provided category la-
bels. To explain this, we computed the average similarity of
documents with must-links. As shown in Table 1, the aver-
age document similarity increased as more overlapping NEs
were required. This implies that NE constraints may provide
redundant information as provided by the document similar-
ity metric. In contrast, human-provided category labels may
provide additional information (e.g., topic information) to
guide the clustering towards the ground truth.

We also tested the algorithms under all the 190 two-class
clustering conditions for all the 20 newsgroups. For all
the two-class problems, we sampled 50% of the documents
for testing. The number of overlapping NEs was set to be
at least 5. The resulting number of must-link constraints
(Cons.) and the correct percentage (Cor. Perc.) values are
shown in Fig. 4 (a). These data show that, overall, the de-
rived NE constraints were quite accurate. In most cases, over
95% of the derived NE constraints were correct. In addition,
as shown in Figs. 4 (b) and (e), for all the 190 cases, the NE
constraints can help improve the clustering performance for
both CKmeans and CITCC rather consistently. Moreover,
for CITCC, the dots are concentrated at the upper right cor-



(a) # Cons. and Cor. Perc. (b) Kmeans vs. CKmeans (c) SNMF vs. CSNMF (d) STriNMF vs. CSTriNMF (e) ITCC vs. CITCC

Figure 4: NE constraints results on 190 two-class clustering problems in 20-newsgroups data.

ner, thus indicating consistently high performance for both
ITCC and CITCC. For the results in Figs. 4 (c) and (d),
however, the usefulness of NE constraints for CSNMF and
CSTriNMF are less consistent. Many times the additional
constraints actually hurt the performance. We speculate that
this may be due to two factors. First, as shown in Table 2,
the clustering results were quite sensitive to the number of
overlapping NEs used in constructing the must-links, espe-
cially for CSNMF and CSTriNMF. Since we set the least
number of overlapping NEs required to add a must-link to
be the same for all the systems and across all the 190 test
conditions, the results for CSNMF and CSTriNMF may not
always be optimal. Second, since we used the same tradeoff
parameters in all the experiments, the parameters may not
be optimal for CSNMF and CSTriNMF.

Conclusion and Future Work
In this paper, we proposed a novel constrained co-clustering
approach that automatically incorporates constraints into
information-theoretic co-clustering. Our evaluations on a
benchmark data set demonstrated the effectiveness of the
proposed method for clustering textual documents. Our al-
gorithm consistently outperformed all the tested constrained
clustering and co-clustering methods under different condi-
tions. There are several directions for the future research.
For example, we will explore other text features that can be
automatically derived by natural language processing (NLP)
tools to further improve unsupervised document clustering
performance. We are also interested in applying CITCC to
other text analysis applications such as visual text summa-
rization.
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